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Fig. 1: The left side demonstrates our experimental setup, where participants complete a steering task using a gaze-based cursor
in a VR environment. (a—b) illustrate simulated spatial inaccuracy by introducing a fixed offset between the user’s actual gaze point
and the displayed gaze cursor, representing systematic calibration errors (see Sec. 2.3 for formulas and details). (c—d) depict spatial
imprecision, modeled by adding Gaussian noise to the gaze cursor position to reflect reduced stability in gaze estimation (see Sec. 2.3
for formulas and details).

Abstract—Recent advances in eye-tracking technology have positioned gaze as an efficient and intuitive input method for Virtual
Reality (VR), offering a natural and immersive user experience. As a result, gaze input is now leveraged for fundamental interaction
tasks such as selection, manipulation, crossing, and steering. Although several studies have modeled user steering performance
across various path characteristics and input methods, our understanding of gaze-based steering in VR remains limited. This gap
persists because the unique qualities of eye movements—involving rapid, continuous motions—and the variability in eye-tracking make
findings from other input modalities nontransferable to a gaze-based context, underscoring the need for a dedicated investigation into
gaze-based steering behaviors and performance. To bridge this gap, we present two user studies to explore and model gaze-based
steering. In the first one, user behavior data are collected across various path characteristics and eye-tracking conditions. Based
on this data, we propose four refined models that extend the classic Steering Law to predict users’ movement time in gaze-based
steering tasks, explicitly incorporating the impact of tracking quality. The best-performing model achieves an adjusted R? of 0.956,
corresponding to a 16% improvement in movement time prediction. This model also yields a substantial reduction in AIC (from 1550
to 1132) and BIC (from 1555 to 1142), highlighting improved model quality and better balance between goodness of fit and model
complexity. Finally, data from a second study with varied settings, such as a different eye-tracking sampling rate, illustrate the strong
robustness and predictability of our models. Finally, we present scenarios and applications that demonstrate how our models can be
used to design enhanced gaze-based interactions in VR systems.

Index Terms—Human Performance Modeling, Virtual Reality, Eye-Tracking Data Quality, Gaze-Based Interaction, Steering Law.
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A well-designed virtual reality (VR) system typically integrates mul-
tiple interaction methods—such as selection, dragging, crossing, and
steering—to provide an efficient, seamless user experience. Among
these methods, steering, i.e., guiding an object along a predefined path
from a starting point to an endpoint, has been widely applied in areas
such as gaming [20], menu navigation [19], and simulated driving [57].
The Steering Law [1] models how path characteristics influence user
performance in steering tasks and helps understand user steering behav-
iors more deeply. Previous studies have confirmed this law’s applicabil-
ity to a wide range of hand-based input methods, including stylus- [22],
bare-hand- [52], and controller-based interactions [16].

Although the Steering Law has been validated for various hand-
based input methods, recent advances in eye-tracking technology now
afford the possibility of performing steering tasks through gaze-based
input. Thus, such gaze-based interaction has been given increased
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attention by the human-computer interaction community. Advances
in eye-tracking technology now enable VR headsets to incorporate
lightweight tracking systems, allowing users to interact with virtual
environments (VEs) solely through their gaze. Prior research suggests
that gaze-based input can be both intuitive and immersive while main-
taining high efficiency [7,28,44]. Moreover, gaze-based methods offer
genuine hands-free operation [24,25], which is particularly benefi-
cial in confined environments or situations where the users’ hands are
otherwise occupied.

Although numerous studies have examined steering tasks and gaze-
based interaction separately, a comprehensive understanding of gaze-
based steering in virtual environments remains limited. This gap ex-
ists because findings from other input methods—including bare-hand,
controller, and head-tracking—cannot simply be generalized to gaze-
based steering. Two key factors contribute to this. First, eye move-
ments differ markedly from other input modalities: whereas hand or
head movements tend to be relatively stable, the eyes exhibit constant
motion—even during fixation—due to tremors, drifts, and microsac-
cades [10]. This inherent instability leads to performance outcomes
and user experiences distinct from those observed with other input
methods [39]. Second, analyzing gaze-based steering requires careful
consideration of tracking systems and the quality of the data captured.
Factors such as eye-tracking algorithms [26], individual pupil charac-
teristics [36], target location [11], and scene brightness [51] can all
influence tracking fidelity. Prior work further shows that fluctuations in
tracking quality significantly affect both user performance and overall
experience [12].

To address this gap, we conducted two user studies aimed at un-
derstanding gaze-based steering behavior and extending the classic
Steering Law to enable accurate prediction of users’ movement time
in steering tasks while explicitly accounting for tracking-quality varia-
tions. In the first study (N = 24), participants performed steering tasks
under varying conditions, e.g., differences in tracking quality and path
characteristics, using the Meta Quest Pro, which features a proprietary
eye-tracking system. We recorded movement time, success rate, and
average movement speed (see Sec. 4.7). Based on the data, we tested
the original Steering Law for gaze-based tasks and quantified the im-
pact of tracking quality, ultimately yielding four enhanced predictive
models (see Sec. 5.4). Subsequently, we conducted a second study
(N = 14) using the Pico headset equipped with Tobii eye tracking to
further validate these models by collecting additional behavioral data
across different tracking quality conditions (see Sec. 6). Our findings
empirically demonstrate that, compared to previously established mod-
els, these refined models deliver superior predictive accuracy for both
movement time and average movement speed.

In summary, the primary contributions of our work include:

¢ An empirical verification of the Steering Law’s applicability to
gaze-based steering tasks in VR.

¢ A systematic investigation and quantification of the effects of
eye-tracking quality in VR systems.

¢ The development and validation of four novel predictive mod-
els that significantly enhance model performance in predicting
movement time, with 16% higher adjusted R? and AIC and BIC
reduced from 1550 to 1132 and from 1555 to 1142, accounting
explicitly for gaze characteristics.

* A robustness evaluation of these predictive models across various
eye-tracking qualities and sampling rates, providing practical
guidelines for gaze-based interaction design.

2 RELATED WORK

This section reviews related work in three areas. First, we discuss
foundational HCI models, including Fitts’ Law and the Steering Law.
Second, we examine gaze-based techniques, highlighting interaction
patterns and behavioral characteristics. Finally, we review work on
eye-tracking quality, which is characterized by accuracy and precision.
In particular, we focus on the factors that affect tracking performance,
the experimental implications of these variations, and the methods used
to simulate tracking errors.

2.1 Modeling Human Behavior in Pointing and Steering

To quantify and predict human performance in pointing tasks, Fitts’
Law is a fundamental and widely used probabilistic model based on
human behavioral patterns [27]. The movement time (MT) in Fitts’
law refers to the time required to point at and select a target, which is
influenced by the index of difficulty (/D). The ID is determined by two
basic task parameters: target width (W) and target amplitude (A). The
equation below expresses the relationship between MT and the task
parameters:

A
MT =a+b-ID, ID=log, (W+1> (1)

W represents the width of the target, and A denotes the amplitude,
i.e., the distance between the starting position and the target. The
coefficients a and b are empirically determined through regression
analysis.

Inspired by Fitts’ law, the Steering Law focuses on interpreting be-
havioral patterns and performance in steering tasks, which involve users
navigating through paths constrained by limited width and length [2,57].
Behavior and performance are typically represented by the movement
time (MT') metric, which refers to the time required to steer from the
start to the end point [1]. The relationship between MT, width (W),
and length (A) can be expressed as [1]:

ds
MT:a+b~/CW ©))

where a and b represent empirical constants, s denotes a specific po-
sition along path C, and W (s) refers to the width at the position s.
Assuming that path ¢ maintains a constant width, Eq. (2) can be further
simplified to:

A
MT = b — 3
a+ W 3

Thus, the ds and W (s) can be replaced by the independent value of path
length A and path constant width W.

In real-world applications, steering behavior is often affected by addi-
tional system-level factors beyond path geometry. Relevant to our work,
previous research has developed various extended models and explored
how some unavoidable factors impact user performance by integrating
them into predictive models. For example, Wei et al. [50] conducted
experiments with eight commonly encountered device frame rates in
VR to quantify the effect of frame rate on path steering tasks. Their
findings demonstrate that the impact of frame rate on movement time
follows an exponential trend. Consequently, they proposed a model in
which movement time is influenced not only by the amplitude-to-width
ratio of the path but also by an exponential function of the frame rate.
To address unresolved issues associated with device delays, Yamanaka
and Stuerzlinger [56] further investigated the effect of latency on path
steering performance. They defined latency as a combination of in-
herent device delays and delays introduced by human factors. Their
findings indicate that movement time increases proportionally with
latency and that latency interacts with the amplitude and width of the
path, suggesting a compound effect on user performance.

More relevant to our work, previous research has primarily focused
on examining the performance of gaze-based input in selection tasks
and how to model it using Fitts’ Law. However, the predictive power
of Fitts’ Law for gaze input has been less clear. Zhai [60] found a
relatively low fit for gaze, with a value of 0.75, while Vertegaal et
al. [47] reported a higher fit of 0.86 for eye clicks. Miniotas et al. [32]
reported the highest fit of 0.98. Based on the characteristics of eye
movements, Zhang et al. [62] identified two main factors contributing
to the instability of model fitting. The first factor is attributed to the
inevitable micro-saccadic movements of the eyes, which prevent the full
utilization of the target width. To address this, they proposed to subtract
an empirical constant 4 = 11.2 from the original target width. The
second factor stems from prior research suggesting that the contribution
of target distance A to selection time is relatively low. Therefore, they
introduced an empirical term e“, with A = 0.00052, to reduce the



impact of A on selection time. Based on this, they proposed an adapted
version of Fitts” Law as follows:

AA

MT = b
a+ =

“

Additionally, one recent study has applied the steering law to gaze-
based performance in virtual environments [17]. While showing good
predictability, the work did not take into account tracking quality—a
known factor affecting user performance and experience (see Sec. 2.3).

2.2 Gaze-Based Interaction in VR

With the increasing integration of eye-tracking technology, many VR
head-mounted displays (HMDs), such as the Apple Vision Pro, Quest
Pro, and HTC Vive, now incorporate eye-tracking as a standard input
method. Eye-tracking has been extensively explored and applied in
various scenarios as a standalone input method or in combination with
other input modalities, including in games [48], text input [24], and
selection [30]. Scenarios most pertinent to our work include gaze-based
target navigation [21], target manipulation [58], and menu steering
interactions [19].

Oyckoya et al. [37] demonstrated through a target search task that
gaze-based selection significantly reduces target acquisition time com-
pared to using a mouse pointer. In VR selection tasks, Sidenmark et
al. [45] found that gaze-based aiming outperforms raycasting selection
with a handheld controller, and both methods are superior to target
pointing based on head orientation. Although gaze-based interaction
shows clear advantages in terms of temporal efficiency, this benefit
does not extend to error rates [33]. Scott et al. [43] attributed the
higher error rates to intrinsic characteristics of the gaze system: unlike
cursor manipulation, users cannot rely on real-time visual feedback
for calibration and must instead predict and make anticipatory adjust-
ments. During the correction phase, users alternate between fixations
and saccades [14], maintaining prolonged fixations (ranging from 100
milliseconds to several seconds) to stabilize the cursor’s position while
employing saccades to compensate for positioning errors [38].

Research on path-steering tasks in VR employing gaze-based inter-
action remains scarce. Although the influence of gaze-based interaction
has been modeled by an improved Fitts’ law for selection tasks [62],
it is still unclear whether the insensitivity to distance and the limited
utilization of target width observed in gaze-based target selection also
manifests in path-steering tasks. Given the differences between target
selection and steering tasks, further investigation is needed to under-
stand the efficiency and underlying mechanisms of gaze-based steering
in VR.

2.3 Eye Tracking Accuracy and Precision

In 1981, McConkie et al. [29] emphasized the importance of defining
and reporting data quality metrics in eye-tracking experiments. Data
quality is critical in ensuring the comparability and standardization of
experimental results [3,35]. In line with this, Holmqvist et al. [15] pro-
posed a minimal reporting guideline for eye-tracking research, which
mandates that the quality of the fixation signals provided by an eye
tracker—such as spatial accuracy, spatial precision, packet loss, and
sampling rate—should be reported.

Because current eye tracking systems have achieved substantial
control over packet loss and sampling rate—thereby minimizing the
impact of external factors [46]—our research focuses primarily on two
performance measures: spatial accuracy (Ac) and spatial precision
(Pr). Spatial accuracy [12] is defined as the mean angular deviation
between the recorded fixation points and their corresponding target
positions, computed over multiple samples as shown in Eq. (5). In
practical terms, a lower average angular deviation indicates that the
eye tracker produces measurements that are closer to the true target.
Thus, the accuracy is defined as Eq. (5), with g and #; representing the
measured gaze and target vectors, respectively, and N the number of
samples.
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Fernandes et al. [12] artificially introduced additional spatial accu-
racy offsets to investigate the effects of degraded accuracy on selection
tasks. Their findings showed that when spatial accuracy errors were
high, users needed more time to complete tasks and made more errors.
The new x and y coordinates (in degrees) were derived from the original
Tobii gaze point (Poyiginal) at the same z-distance, yielding a degraded
point (Pyegraded) through a rotation 6 and offset magnitude Mag.

Piegraded = Foriginal T Vec3 (008(9)7 Sin(e),()) x Mag (6)

Spatial precision quantifies the stability of individual gaze samples
over time for a fixed target [34] and is typically determined by calcu-
lating the standard deviation of the angular differences between each
individual gaze direction and the mean one. Similarly, the precision is
formulated as Eq. (7), where g denotes the mean gaze vector computed
over all N samples.

1 N
Precision = , | —— ¥ [lg;— &2 7
recision N1 llgi — &l (7

Schuetz et al. [42] introduced Gaussian noise to simulate the random
errors caused by insufficient spatial precision in tracking. Their findings
demonstrated that spatial accuracy significantly impacts error rates and
helped determine the minimum target size on the interface required
to ensure smooth user selection. The following equation expresses
how Gaussian noise is added to the original gaze position to obtain the
degraded position:

&
Pdegraded = Poriginal +1& |, & &y ~ JV(O, 62) (6))
0

While manufacturers rarely disclose spatial precision and accuracy
metrics for their eye-tracking systems, studies have measured these
parameters for several popular devices under controlled conditions.
These measurements (see Tab. 1) ensure reliable user experiments.

Device Accuracy(°) Precision(°)

RMS SD
Apple Vision Pro [18] 2.5 Not stated Not stated
Quest Pro [49] 2.162 0.772 0.673
HoloLens 2 [5] 2.92 0.071 Not stated
Vive Pro Eye [4] 1.08 0.20 0.36

Table 1: Measured spatial accuracy and precision of commercial eye-
tracking devices. Precision is characterized by RMS and SD values.

3 RESEARCH QUESTIONS

While prior work has extensively explored the modeling of gaze-based
input, most studies have focused exclusively on selection tasks, largely
overlooking steering interactions and the influence of tracking qual-
ity. Thus, to systematically understand how gaze characteristics and
path constraints influence user behaviors with gaze-based steering
interaction, we pose the following research questions:

RQI: How do path features, such as width and length, influence user
behavior in gaze-based steering tasks? Previous studies on gaze-based
pointing indicate that movement time is not strictly proportional to the
amplitude of the movement [13,41], implying limited sensitivity to path
length (A) in selection tasks. Zhang et al. [62] adapted Fitts’ Law by
applying an exponential transformation to A and reducing the effective
target width (W) using an empirically derived constant to better accom-
modate eye-fixation stability. Inspired by these works, although prior
work has examined gaze-based steering performance, it is necessary
to revisit this under varied path settings to ensure model accuracy as
a foundation for incorporating tracking quality. We therefore aim to
investigate how path width and length affect movement time, average
steering speed, and error rates in gaze-based tasks (Sec. 4.7).



RQ2: How do spatial precision and accuracy of eye tracking in-
fluence user behavior in gaze-based steering tasks? As discussed in
Sec. 2.3, previous studies have attributed poor task performance in
gaze-based interaction primarily to limited eye-tracking quality. To in-
vestigate this, researchers have introduced artificial gaze cursor offsets
to manipulate spatial accuracy and applied Gaussian noise to degrade
spatial precision, providing controlled hardware and environments to
simulate suboptimal conditions. While such manipulations significantly
affect task completion time and error rates in selection tasks, the distinct
nature of steering tasks requires dedicated exploration. This RQ aims
to investigate how variations in spatial accuracy and precision influ-
ence user behavior in gaze-based steering, focusing on quantitatively
characterizing their impact on performance metrics.

RQ3: How does user behavior in gaze-based cursor control align
with the Steering Law? Unlike mouse-driven cursor movement, eye
movements alternate between fixations and saccades [14, 38], which
limits the ability to fully utilize visual feedback for real-time control and
necessitates predictive adjustments [41]. In addition, inherent ocular
behaviors, such as tremors, drifts, and microsaccades, further affect
gaze stability and control. This RQ investigates whether the Steering
Law, which models the relationship between path characteristics and
movement time, remains applicable for gaze-based steering tasks.

RQ4: Can the effects of spatial accuracy and precision on user
behavior in steering tasks be captured or explained through mathe-
matical modeling? Previous research, see Sec. 2.1, has shown that
integrating additional variables—such as latency and frame rate—into
traditional interaction models significantly enhances their applicability.
Building on insights from RQ1I and RQ2 regarding path characteristics
and eye-tracking data quality, and considering the validity of the Steer-
ing Law addressed in RQ3, we seek to formalize these relationships
into novel predictive models. Such models can explicitly incorporate
spatial accuracy and precision as parameters, potentially improving the
predictive power and generalizability of models for gaze-based steering
interaction.

4 USER STUDY

This study systematically explores how spatial accuracy, spatial preci-
sion, and path characteristics (length and width) affect user performance
and behavior during gaze-based steering tasks. This research was re-
viewed and approved by the University Ethics Committee of Xi’an
Jiaotong-Liverpool University (ER-LRR-1288940720231023134013).
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Twenty-four participants (13 males and 11 females) were recruited
from a local university. Their ages ranged from 18 to 26 years
(M = 21.56,SD = 1.59). We also recorded each participant’s vi-
sual characteristics and whether they wore corrective lenses (see the
supplementary material). Using a 7-point Likert scale, participants
rated their familiarity with VR systems (M = 4.42,SD = 1.28) and
their familiarity with gaze-based interaction (M = 3.13,5D = 1.90),
with higher scores indicating greater familiarity. The initial spatial
precision and accuracy of the users were evaluated following the
procedure detailed in Sec. 4.3. The results indicated an initial spa-
tial accuracy of (M = 0.77°,§ = 0.28°) and a spatial precision of
(M =0.38°,8 = 0.29°), see Sec. 4.3 with a Meta Quest Pro.

Participants

4.2 Apparatus

Eye movements were recorded using the proprietary, integrated eye
tracker in the Meta Quest Pro VR headset, which had a resolution
of 1800 x 1920 per eye, a horizontal field of view (FoV) of 106°,
and a vertical FoV of 95.57°. The eye-tracking hardware, a standard
component of the Quest Pro, captures positional gaze data at up to
90 Hz via Meta’s Unity public eye-tracking API [31]. To minimize
extraneous head movement even further [6] and to guarantee that the
cursor is operated only by eye movements, participants’ heads were
stabilized using a chin rest, similar to those used in vision assessments.
The software ran on a PC equipped with an Intel Core 19 processor and
an NVIDIA RTX 3080 Ti GPU.

4.3 |Initial Spatial Accuracy and Precision Measurement

Before the formal experiment, participants adjusted the interpupillary
distance (IPD) on the Quest Pro headset until the display was clearly
visible. Subsequently, they completed the 9-point eye-tracking calibra-
tion provided by the Quest Pro and self-assessed its calibration quality
before proceeding. To quantify eye-tracking quality more precisely,
we followed the approach proposed by Wei et al. [49], positioning 13
targets evenly distributed across a +15° field of view at intervals of 5°.
Each target had an angular size of approximately 0.7° and was placed
at a fixed depth of 0.5 meters from the participants. At the beginning of
each trial, participants initiated the task by pressing the trigger button
on the handheld controller. Targets appeared red and turned blue upon
gaze activation. Participants were instructed to maintain fixation on
each target for 5 seconds, during which gaze endpoints were sampled
at 90 Hz. Spatial accuracy and precision were then calculated using
equations Eq. (5) and Eq. (7), as described in Section 2.3.

4.4 Experimental Task

In our experimental setup, we adopted a task similar to the steering
task described in prior VR research [23,50]. The starting region was
marked in green and the ending region in blue [55]. Before each
trial, participants pressed a button on the controller to activate the
eye-tracking system and control the cursor ball. When the cursor ball
overlapped with the starting region for 100 ms, that region turned red,
signaling the beginning of the task. The participants were then required
to control the cursor ball to move (“push”) a target ball with a diameter
equal to the path width along the entire path until it reached the blue
end area, marking the completion of a trial. If the cursor ball exited the
path, we considered the trial to be erroneous.

4.5 Design and Procedure

The user study employed a 2 x 3 x 4 x 4 within-subjects design with
four independent variables, resulting in 96 conditions in total:

e Path Length (A): 30°, and 50°

e Path Width (W): 3°,4.5° , and 6°

 Artificial Spatial Accuracy (Ac): 0°, 1°,2°, and 3°

« Artificial Spatial Precision (Pr): 0°,0.5°, 1°, and 1.5°

Path length was defined as the distance from the starting region to the
ending region, while path width referred to the diameter of the target
ball (see Fig. 2). The design of path width and path length followed the
difficulty index (/Ds) from the original Steering Law Eq. (3), ranging
from 5.0 to 16.67 bits, covering a spectrum from easy to difficult task
conditions.

Since spatial precision and accuracy vary significantly across users
and device conditions, we first reviewed existing measurements re-
ported in prior studies (see Tab. 1), where spatial accuracy ranged from
1.08° to 2.92°, and spatial precision (SD) ranged from 0.36° to 0.67°.
Inspired by Yamanaka et al.’s approach [56] to analyzing latency ef-
fects, we categorized spatial precision and accuracy into baseline values
determined by device configurations and additional manipulations in-
tentionally introduced in our study. Specifically, following Fernandes et
al. [12], we artificially introduced spatial accuracy offsets (see Eq. (6)),
with randomized direction varying across conditions. To simulate the
random errors caused by insufficient spatial precision, we adopted the
Gaussian noise approach proposed by Schuetz et al. [42] (see Eq. (8)).
Based on previous empirical findings, we selected spatial accuracy
offsets ranging from 0° to 1.5° and spatial precision values from 0° to
3°, effectively encompassing the majority of real-world scenarios.

The two A, three W, four Ac, and four Pr values were combined
into 96 conditions and presented in a randomized order during the
experiment. Each condition was repeated four times, resulting in
a total of 9216 data points (24 x 3W x 4AC x 4Pr x 4 repetitions x
24 participants).

Participants first completed a demographic questionnaire, followed
by the initial measurement of spatial precision and accuracy (see Sec-
tion 4.3). After this measurement, participants engaged in a five-minute
practice session to familiarize themselves with the task. Formal trials
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Fig. 2: The path width is defined by the diameter of the target ball. Participants control the gaze cursor along a predefined movement direction to
push the target ball from the starting area to the target area. The left illustration depicts a fixed offset representing an intentionally injected spatial
accuracy error, while the right illustration shows a spatial precision error simulated using Gaussian noise.

began after this practice period. During the experiment, participants
were instructed to remain seated in a fixed, non-rotating chair, minimize
head movement, and focus on speed and accuracy. Each session lasted
approximately 40 minutes, with short breaks between trials to prevent
eye fatigue.

4.6 Evaluation Metrics

Three performance metrics—movement time (MT'), average speed (V),
and error rate—were collected for each trial.

* Movement Time (MT): The total time taken to complete the
steering task from the start area to the end region. MT is a
standard metric for assessing human behavior patterns and task
performance [54].

» Average Speed (V): Calculated as the path length divided by
movement time, average speed offers a stable performance mea-
sure by minimizing the variability seen in point-based speed
measurements [59]. Higher average speeds indicate better perfor-
mance [53].

* Error Rate: We recorded a successful completion when the user
managed to control the target ball to the endpoint in a single
attempt. An error occurred when the cursor either lost contact
with the target ball or exited the path before reaching the goal.

4.7 Results

We initially collected 9216 records. After excluding 13 trials (0.14%)
with movement times exceeding 20 seconds and 166 trials (1.80%)
that deviated more than three standard deviations from the mean speed,
we analyzed 9037 valid records. Repeated measures ANOVA was
conducted on Movement Time (MT'), Average Speed (V), and Error
Rate, applying Greenhouse-Geisser correction for sphericity violations
and Bonferroni corrections for post-hoc comparisons.

4.7.1

Factors A, W, Ac, and Pr significantly affected movement time (A:
F11’23 = 286.067, p< 0.001, T]I% =0.926; W: F] .088,25.031 = 219.907,

p <0.001, n2 =0.905; Ac: Fy 301 54980 = 93.506, p < 0.001, 1% =

0.803; Pr: F133230.635 = 37.823, p < 0.001, n]% = 0.622). The inter-
actions were also significant (A X W: Fj 416 32.566 = 84.023, p < 0.001,
N2 =0.785; W x Ac: Fg 133 = 6.032, p < 0.001, n2 = 0.208; A x Pr:
F360 =20.471, p <0.001, 12 = 0.471; W x Pr: F33777.511 = 4.267,
p=0.001, n2 =0.156).

Post-hoc analyses revealed that within factor A, the 30° condition
yielded significantly shorter movement times than 50° (A = 1790 ms,
p < 0.001). For factor W, the 3° condition resulted in significantly
longer movement times than both 3.5° (A =2080 ms, p < 0.001) and
6° (A =2817 ms, p < 0.001), while 4.5° was significantly longer than
6° (A =737 ms, p < 0.001). Regarding factor Ac, movement time at
0° was significantly shorter than at 2° (A = 661 ms, p < 0.001) and
3° (A =1026 ms, p < 0.001); similarly, 1° was shorter than both 2°
(A =484 ms, p < 0.001) and 3° (A = 849 ms, p < 0.001), and 2°
was shorter than 3° (A = 365 ms, p < 0.001). For factor Pr, the 0°

Movement Time

condition produced significantly shorter times compared to 1° (A =915
ms, p < 0.001) and 1.5° (A = 1394 ms, p < 0.001); similarly, 0.5°
was shorter than 1° (A =595 ms, p < 0.001) and 1.5° (A = 1074 ms,
p < 0.001), while 1° was shorter than 1.5° (A =479 ms, p < 0.001).

4.7.2 Speed

Factors W, Ac, and Pr also had a significant influence on speed (W:
Fl‘]92ﬁ27.419 = 178.235, p < 0.001, T]‘,% = 0.886; Ac: F2.276,52.346 =

65.198, p < 0.001, % = 0.739; Pr: Fy 345 30.942 = 48.804, p < 0.001,
171% = (.680). Significant interactions were observed as well (A x W:
Fy46 =7.706, p = 0.010, 2 = 0.251; W x Ac: Fg 133 = 89.296, p =
0.010, 75 = 0.200; W x Pr: F3702,85.143 = 151.024, p = 0.030, 17 =
0.162; Ac X Pr: Fy 615,106,147 = 151.024, p < 0.010, 02 = 0.192).

Post-hoc comparisons showed that when W was 3°, speed was
significantly lower than at 4.5° (A = 6.266 °/s, p < 0.001) and 6°
(A=10.687 °/s, p < 0.001), and the 4.5° condition was lower than 6°
(A=4.421°/s, p < 0.001). For factor Ac, speed at 0° was significantly
lower than at 2° (A =2.991 °/s, p < 0.001) and 3° (A = 4.126 °/s,
p < 0.001); likewise, 1° was lower than 2° (A =2.144 °/s, p < 0.001)
and 3° (A=3.279 °/s, p < 0.001), and 2° was lower than 3° (A=1.135
°/s, p < 0.001). Regarding Pr, speed at 0° was significantly lower than
at 0.5° (A =3.404 °/s, p =0.003), 1° (A =6.733 °/s, p < 0.001), and
1.5° (A = 8.692 °/s, p < 0.001); similarly, 0.5° was lower than 1°
(A=3.329°/s, p < 0.001) and 1.5° (A =5.288 °/s, p < 0.001), while
1° was lower than 1.5° (A = 1.959 °/s, p < 0.001).

4.7.3 Error Rate

Factors W, Ac, and Pr also had a significant influence on speed (W:
F1.192,27.419 = 178.235, p < 0.001, 71,% = 0.886; Ac: F2276,52.346 =

65.198, p < 0.001, 7 = 0.739; Pr: F| 345 30.042 = 48.804, p < 0.001,
n[% = 0.680). Significant interactions were observed as well (A x W:
Fy46 =1.706, p=0.010, n2 = 0.251; W x Ac: Fg 133 = 89.296, p =
0.010, n% = 0.200; W x Pr: F3 70285148 = 151.024, p = 0.030, 0 =
0.162; Ac X Pr: Fy615,106.147 = 151.024, p < 0.010, n% = 0.192).

Post-hoc comparisons showed that when W was 3°, speed was
significantly lower than at 4.5° (A = 6.266 °/s, p < 0.001) and 6°
(A =10.687 °/s, p < 0.001), and the 4.5° condition was lower than 6°
(A=4.421"°/s, p < 0.001). For factor Ac, speed at 0° was significantly
lower than at 2° (A = 2.991 °/s, p < 0.001) and 3° (A = 4.126 °/s,
p < 0.001); likewise, 1° was lower than 2° (A = 2.144 °/s, p < 0.001)
and 3° (A=3.279 °/s, p < 0.001), and 2° was lower than 3° (A =1.135
°/s, p < 0.001). Regarding Pr, speed at 0° was significantly lower than
at 0.5° (A =3.404 °/s, p =0.003), 1° (A = 6.733 °/s, p < 0.001), and
1.5° (A =8.692 °/s, p < 0.001); similarly, 0.5° was lower than 1°
(A=3.329"°/s, p < 0.001) and 1.5° (A =5.288 °/s, p < 0.001), while
1° was lower than 1.5° (A = 1.959 °/s, p < 0.001).
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Fig. 3: The effects of path length (A), the path width (W), spatial accuracy (Ac), and spatial precision (Pr) on (a—d) movement time, (e—h) speed, and
(i-1) error rates. Error bars represent 95% confidence intervals. Significance levels are indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001.

4.8 Discussion

4.8.1 Effects of Path Features in Gaze-Based Steering Tasks

(RQ1)

Our results demonstrated that both path amplitude (A) and width (W)
significantly influenced movement time and error rate (p < 0.001) for
gaze-based steering, aligned with prior findings from traditional steer-
ing studies [55]. Regarding cursor speed, path width had a significant
impact, whereas amplitude did not. Interestingly, despite the wide
range of difficulty indices selected for this study, no speed saturation
effect was observed, potentially due to unique constraints inherent to
gaze-based interaction [57]. Notably, the error rates recorded in our
gaze-based steering tasks were substantially higher than those reported
in studies employing hand, controller, or mouse inputs [50, 52]. We
attribute this elevated error rate primarily to two factors. First, inherent
characteristics of gaze interaction—such as the inability of the eyes to
fully exploit the target width and uncontrolled micro-saccadic move-
ments—typically lead to increased error rates [61]. Second, limitations
in spatial accuracy and precision inherent to eye-tracking hardware
introduce cursor instability, further compromising users’ ability to
effectively control the cursor, thus exacerbating error rates.

4.8.2 Effects of Spatial Accuracy and Precision in Gaze-Based
Steering Tasks (RQ2)

Our analysis revealed that both spatial accuracy (Ac) and spatial preci-
sion (Pr) significantly impacted movement time (see Fig. 3). Post-hoc
pairwise comparisons showed that at lower levels of spatial accuracy
error (Ac = 0°,1°) and spatial precision error (Pr = 0°,0.5°), no sta-
tistically significant differences in user performance were observed.
However, increasing spatial accuracy and precision errors substantially
impacted movement time, cursor speed, and error rates. Notably, error
rates approached 100%, indicating saturation at higher levels of spatial
precision errors (Pr=1.0°,1.5°).

Participants generally adapted to spatial accuracy errors by com-
pensating for systematic biases during the initial phases of each task,
albeit at the cost of increased initial reaction and adjustment time. In
contrast, spatial precision errors presented a more critical challenge
due to unpredictable cursor fluctuations, significantly reducing users’
ability to anticipate cursor positions from one moment to the next. This
unpredictability caused confusion and significantly elevated error rates.
Unlike the systematic adaptation observed for spatial accuracy, partici-
pants could not effectively adjust to spatial precision errors, resorting
instead to maintaining the cursor near the path center as a mitigation
strategy.

5 MODELING

In this section, we aim to (1) assess the applicability of the Steering
Law in gaze-based interaction, (2) use regression to analyze the impact
of spatial accuracy and spatial precision on time, (3) develop new
candidate models based on generalized eta-squared and eye movement
characteristics, and (4) compare the predictive performance of the
candidate models with the original Steering Law.

5.1 Verifying the Applicability of the Steering Law in Gaze-

Based Interaction

First, we independently analyze spatial precision and spatial accuracy to
isolate their effects and examine the original Steering Law formulation
in the context of gaze-based control for the Steering Task. This allows
us to assess the predictive accuracy of movement time (M7T') under this
control modality across different path lengths (A) and path widths (W).

A total of 16 combinations (4Ac x 4Pr) were considered. Within
each Ac x Pr combination, there were six unique IDs (24 x 3W). We
applied Ordinary Least Squares (OLS) regression separately to each
of the 16 combinations. Fig. 4 shows the fitting results obtained
using the original Steering Law applied to all variables (N = 96;
2A x 3W x 4Ac x 4Pr), resulting in an adjusted R2 = 0.798. Sub-
sequently, we fitted the model separately for each spatial precision
and accuracy combination, resulting in 6 data points (2A x 3W) per
combination. The original Steering Law Eq. (3) demonstrated excellent
fits, as indicated by the coefficient of determination (adj.R?) for each
Ac x Pr combination (M = 0.976, SD = 0.021).
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Fig. 4: (a) Model fitting of movement time (MT) using the original Steering
Law across all conditions (n = 90). (b) Separate model fittings for each
combination of spatial precision and spatial accuracy.



5.2 Formulating the Effect of Spatial Accuracy and Preci-
sion

In this section, we employ regression analysis to mathematically quan-
tify the complex relationship between spatial precision (Ac) and spatial
accuracy (Pr) with movement time (MT). In Sec. 4.7.1, we report the
effects of spatial precision and accuracy on movement time, as well as
their interaction effects with path width and path length. Our findings
indicate that when spatial precision and accuracy are low, their impact
is not significant. However, at higher levels of spatial precision and
accuracy, their influence becomes more pronounced. Based on this
observed trend, we explored four commonly used regression models:
linear, power, logarithmic, and exponential functions. To evaluate the
fitting performance of these regression functions and prevent overfit-
ting, we computed the coefficient of determination (R2), the Akaike
Information Criterion (AIC), and the Bayesian Information Criterion
(BIC). As shown in Sec. 5.2, both partial precision and accuracy exhib-
ited the best fit with the linear and exponential functions. Furthermore,
since the AAIC and ABIC values for these two functions are less than
2, their performance differences are not considered statistically sig-
nificant [8,40]. To minimize the complexity introduced by additional
variables in subsequent modeling, we selected the linear function to
quantify the effect of spatial precision and accuracy on movement time
in future analyses.

Factor Model Adjusted R? AIC BIC
MT = a+bAc 0.975 37.214  35.986

Ac MT =a+b xAc® 0.902 42.686 41.45
MT = a+ blIn(Ac) 0.877 43580  42.353
MT =a+b x eA¢ 0.980 36.189  34.962
MT =a+bPr 0.987 36.911  35.684
Pr MT =a+bxPr¢ 0.931 43766  42.539
MT = a—+blIn(Pr) 0.899 45264  44.036
MT =a+bxel” 0.992 35.042  33.815

Table 2: Comparison of four regression models (linear, power, logarithmic,
and exponential) for quantifying the relationship between spatial accuracy
(Ac), spatial precision (Pr), and movement time (MT). Best-performing
results are highlighted.

5.3 Model Derivation

Given the absence of prior work specifically addressing gaze-based
steering tasks, we first adopted Zhang et al.’s extension of Fitts’ Law
(Eq. (4)) [62], which integrates gaze-specific characteristics for selec-
tion tasks, as our Candidate Model 1 (CM1). To determine whether
spatial accuracy and precision should be incorporated into predictive
steering models, we computed generalized eta-squared (né) values
to quantify their contributions to movement time variance. The re-
sults showed substantial effect sizes for amplitude (A, 1‘[(2; =0.372),
width (W, n& = 0.512), accuracy (Ac, n = 0.108), precision (Pr,
né =0.176), and the interaction between amplitude and width (A x W,
né = 0.076). Following Cohen'’s criteria for effect sizes [9] (small:
0.01, medium: 0.06, large: 0.14), only factors and interactions with
medium or larger effects were considered further. Our findings clearly
indicate that both spatial accuracy and precision significantly influence
steering performance without notable interaction effects. Thus, incorpo-
rating these two gaze-tracking quality factors into the predictive models
is warranted.

Based on these quantified relationships (see Section Sec. 5.2), we
extended the original Steering Law (Eq. (3)) by linearly integrating
spatial accuracy to create Candidate Model 2 (CM2). Similarly, spatial
precision was incorporated into the original model separately, resulting
in Candidate Model 3 (CM3). Finally, both spatial accuracy and

precision were simultaneously integrated into the original model to
develop Candidate Model 4 (CM4). The detailed derivation and
structure of these candidate models are summarized in Sec. 5.4.2.

5.4 Model Evaluation
5.4.1 Model Fitting Methods and Metrics

We used non-linear least squares optimization to accurately estimate
parameters for each candidate model. Multiple initial parameter values
were tested during fitting to ensure convergence toward the global op-
timum. The final model was selected based on achieving the highest
adjusted R? and the lowest AIC and BIC values, as shown in Sec. 5.2.
Given the comparable performance of the linear and exponential mod-
els (AAIC,ABIC < 2), we opted for the linear function due to its inter-
pretability and simplicity in subsequent modeling.

5.4.2 Evaluation Results

Sec. 5.4.2 summarizes the nonlinear regression analysis results, com-
paring the baseline Steering Law model against four candidate models.
Among these, CM4, integrating both spatial accuracy and precision,
yielded the best predictive performance, clearly indicated by substantial
improvements in information criteria (AAIC > 10, ABIC > 10). CM3,
incorporating only spatial accuracy, ranked second, closely followed by
CM2, which considered only spatial precision. Both CM3 and CM2 sig-
nificantly outperformed the baseline in terms of adjusted R2, AIC, and
BIC. Conversely, CM1 demonstrated negligible improvement relative
to the baseline, emphasizing the necessity of incorporating both spatial
accuracy and precision to substantially enhance predictive accuracy.
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Fig. 5: Comparison of model fitting performance for four candidate mod-
els (CM1-CM4), across all conditions (N = 96)

5.4.3 Cross-Validation

We conducted cross-validation tests based on condition grouping to
verify the generalizability of the four models. Model coefficients were
obtained from 72 randomly selected experimental conditions (levels),
and the model fit was tested on the remaining 24 conditions over 100
iterations. Specifically, the baseline model achieved an average R?
of 0.7592 (£0.0917) and an MSE of 603893 (+163822). Among the
four candidate models, Model 1 obtained an average R? of 0.7621
(4£0.0765) and an MSE of 620684 (4+148607); Model 2 achieved an
average R? of 0.8156 (£0.0589) and an MSE of 448891 (£106534);
Model 3 recorded an average R% of 0.8776 (+0.0412) and an MSE
of 308981 (£80890). Notably, Model 4 demonstrated the highest



Model R? AIC  BIC
BL: Eq. (3) 0.795 1550 1555
CML: Eq. (4) 0.796 1278 1288
CM2: MT =a+biy +c-Ac 0.849 1248 1256
CM3: MT =a+biy +c-Pr 0898 1211 1218
CM4: MT =a+bi +c-Ac+d-Pr 0956 1132 1142

Table 3: Fitting results, where 'BL denotes the baseline and 'CM’ rep-
resents the candidate models. The best performance results are high-
lighted and in bold. Each candidate model incrementally adds predictors
to the previous one, i.e., they are nested, and improvements are clearly
reflected in the decreasing AIC and BIC values.

predictive power, with an average R? of 0.9496 (+0.0136) and an MSE
of 138727 (£35424). Overall, our findings indicate that all models
achieved accurate predictions in the cross-validation analysis, which
were also similar to the original estimates. This suggests that the models
are capable of predicting unseen experimental conditions with high
accuracy.

5.5 Discussion

5.5.1 The Applicability of Steering Law in Gaze-Based Cursor

Control Task (RQ3)

Our findings revealed that fitting the original Steering Law ( Eq. (3)) sep-
arately for each combination of spatial accuracy and precision yielded
a high adjusted R? = 0.956. This suggests that, despite the increased
complexity of transitioning from mouse-based to gaze-based steering
tasks, the Steering Law retains robust explanatory power regarding user
performance and behavior.

5.5.2 Modeling User’s Behavior in Gaze-Based Steering Tasks
(RQ4)

We first modeled the relationship between spatial accuracy, spatial
precision, and movement time by fitting common regression functions
(see Sec. 5.2). Based on model selection criteria (adjusted R2, AIC, and
BIC), a linear relationship provided the best representation of the effects
of these two variables on movement time. Subsequently, generalized
eta-squared values were analyzed to determine which variables should
be incorporated into the original Steering Law. Spatial accuracy (né =

0.108) and spatial precision (né = 0.176) emerged as the significant
factors. Although both parameters reflect the quality of eye-tracking
devices, their interaction effects were negligible (né < 0.01), justifying
their independent incorporation into the predictive models.

Consequently, we constructed three extended models: Candidate
Model 2 (incorporating spatial accuracy), Candidate Model 3 (incor-
porating spatial precision), and Candidate Model 4 (simultaneously
incorporating both variables), as detailed in Sec. 5.4.2. We then eval-
uated these models against the baseline (original Steering Law) and
Candidate Model 1 proposed by Zhang et al. Eq. (4). Results demon-
strated that our extended models substantially improved predictive
performance, as evidenced by adjusted (R?), AIC, and BIC scores
(see Sec. 5.4.2).

Although Candidate Model 1, which accounts for gaze-specific char-
acteristics, showed minimal improvement in adjusted (R%) compared to
the baseline (an increase of only 0.1%), it significantly reduced AIC
(by 272) and BIC (by 267), suggesting enhanced parsimony. Candidate
Model 4, integrating both spatial accuracy and precision, demonstrated
the strongest predictive performance, achieving a notable increase in
adjusted (R?) of 16.1% compared to the baseline, accompanied by
substantial reductions in AIC (418 points) and BIC (413 points). This
superior performance can be attributed to its comprehensive coverage
of explanatory variables. Furthermore, comparisons between Candi-
date Models 2 and 3 aligned well with generalized eta-squared results,
highlighting that precision (Pr) had a stronger impact on predictive
accuracy than accuracy (Ac)), with Candidate Model 3 outperforming

Candidate Model 2 (adjusted (R%) improvement of 4.9%, AIC reduction
of 37, BIC reduction of 38).

In summary, the four candidate models proposed here deepen our
understanding of user behavior in gaze-based steering tasks. These
models effectively capture the influence of eye-tracking quality param-
eters while maintaining interpretability and simplicity, thus minimizing
the risk of overfitting.

6 MODEL VERIFICATION

To further validate the robustness of our proposed models, we conducted
additional experiments using a different head-mounted display. Unlike
Study 1, which employed the Meta Quest Pro with a proprietary eye-
tracking system, this experiment utilized the Pico headset equipped with
Tobii eye-tracking and tested multiple sampling rates. Steering tasks
were performed under various combinations of path characteristics,
spatial accuracy, and spatial precision. Subsequently, we applied the
candidate models derived from Study 1 to predict movement time and
evaluate their stability across different levels of eye-tracking quality.

6.1 Participants, Apparatus, and Task

Fourteen participants (9 males and 5 females) were recruited from a
local university, where five had previously participated in the first exper-
iment. Their ages ranged from 18 to 26 years (M = 20.3,5D = 1.25).
Eye-related information for each participant, including visual char-
acteristics and whether corrective lenses were worn, is provided
in the supplementary material. Participants rated their familiarity
with VR systems on a 7-point Likert scale (M = 4.07,SD = 1.75)
and their familiarity with gaze-based interaction on the same scale
(M =2.28,5SD = 1.32), with higher values indicating greater familiar-
ity. Initial eye-tracking quality was evaluated using the same procedure
as described in Sec. 4.3. The results showed an average spatial accu-
racy of (M = 0.59°,SD = 0.11°) and an average spatial precision of
(M =0.34°,SD = 0.14°).

The experiment was conducted using a Pico 4 Pro HMD featuring a
resolution of 2160 x 2160 pixels per eye and a maximum refresh rate
of 90 Hz. The horizontal field of view (FOV) is 104°, and the vertical
FOV is 103°. Eye tracking was performed using the device’s built-in
cameras and accessed through Pico’s official API. The experimental
application was developed and run on a desktop PC with specifications
identical to those used in the first study.

Following the same procedure as in Experiment 1 (see Sec. 4), the
task flow was controlled through defined starting, task, and ending
regions. Path parameters were varied in terms of width and length,
while eye-tracking quality was manipulated through combinations of
spatial accuracy, spatial precision, and sampling rate. Participants were
instructed to balance both speed and accuracy during task execution.

6.2 Design and Procedure

To assess the stability of the proposed model, we investigated two
sampling rates for eye-tracking devices (30 Hz and 72 Hz) as the main
independent variable for this study. A within-subjects design was
employed, with two eye-tracking sampling rates S (30 Hz, 72 Hz). To
vary the task and to keep the data comparable with the first study, the
experimental factors also included two path lengths A (2°, 3°), two
path widths W (20°, 30°), three levels of spatial precision Ac (0.5°,
1.5°,2.5°), and three levels of spatial accuracy Pr (0.25°, 0.5°, 0.75°).
The experimental procedure and factor ordering were consistent with
those described in the first user study (see Sec. 4). Each participant
took approximately 30 minutes to complete the experiment. In total, we
collected (2A x 2W x 3Ac x 3Pr x 2§ x 4 repetitions x 14 participants)
= 4032 trials.

6.3 Predicting Average Movement Time

Data were preprocessed using the same procedures as described in
the first study. Initially, we collected a total of 4,032 records. After
excluding 26 trials (0.64%) with movement times exceeding 20 seconds
and 94 trials (2.33%) that deviated more than three standard deviations
from the mean speed, we retained 3,912 valid trials for analysis. To
assess the robustness and generalizability of our models across varying



device conditions and eye-tracking sampling rates, separate analyses
were conducted at sampling rates of 30 Hz and 72 Hz. At a sampling
rate of 30 Hz, the baseline (BL) model yielded an adjusted R? of 0.66,
exhibiting the lowest predictive performance across all metrics. In
contrast, Candidate Model 4 (CM4), which incorporates all previously
identified variables from Experiment 1, achieved a substantially higher
adjusted R? of 0.904. At 72 Hz, the BL model again showed limited
predictive capability with an adjusted R? of 0.68, while CM4 exhibited
even greater predictive accuracy (R? = 0.925). These findings demon-
strate the strong generalizability and robustness of CM4 across different
sampling rates and hardware conditions.

7 APPLICATIONS

In this section, we present three example application scenarios. As
illustrated in Fig. 6a, a user interacts with a cascading menu using a
gaze cursor in VR. Under conditions with lower device eye tracking
quality, Candidate Model 4 can be used to adjust the menu’s width
and height to optimize the user experience. Another example is shown
in Fig. 6b, where the user avoids interruptive pop-up notifications
through gaze steering. For instance, when a message or alert appears,
the user can steer their gaze along a narrow path to slide the message
or alert up and out of view. Here, our model can help adjust the width
of the control bars based on variations in spatial accuracy and precision
across different user groups or eye-tracking systems. Finally, as gaze
interaction is the primary input for the Apple Vision Pro, Fig. 6¢ shows
an example scenario in which the user answers a phone call via gaze-
steering. By steering the gaze to the left, the user declines the call; by
steering to the right, the user accepts it.

As one of the most intuitive forms of interaction in VR, gaze-based
interaction offers unique advantages, and more application scenarios
leveraging gaze-based steering can be added in the future. We be-
lieve that our exploration of spatial accuracy and precision can assist
designers in adjusting path parameters based on the performance char-
acteristics of different eye-tracking systems. For instance, designers
may personalize adaptive gaze-steering tasks for individual users based
on spatial accuracy and precision metrics obtained during eye-tracker
calibration if a user’s device exhibits spatial accuracy errors below 1°
or spatial precision instability remains within 0.5°, as we consider jitter
within these thresholds to be acceptable (see Sec. 4.7). When eye-
tracking quality is suboptimal, our proposed formula (see Sec. 5.4) can
help balance task difficulty across users in gaze steering scenarios like
the one presented earlier, ensuring consistent user performance and ex-
perience. This approach ultimately mitigates negative user experiences
caused by eye-tracking limitations across HMDs.
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Fig. 6: Application scenarios for gaze-based steering interaction, where
(a) illustrates a gaze-controlled cascading menu utilizing steering be-
havior for item selection, (b) a notification dismissal mechanism, where
users steer their gaze along a narrow path to remove pop-ups without
manual interaction, (c) presents a scenario on Apple Vision Pro where a
phone call is answered using gaze steering.

8 LIMITATIONS AND FUTURE WORK

Our work identified two main limitations, which point to directions for
future work. First, while our model demonstrated favorable outcomes
in Study 1 through modeling with linear paths and cross-validation, it
explored only a subset of all potential paths. Our model’s robustness
was further substantiated in Study 2 under varying sampling rates and
across different devices. However, given the complexity of real-world
scenarios, future work needs to explore the impact of additional path

characteristics to investigate the interaction effects between gaze-based
interaction and a broader range of path parameters. Second, although
our findings indicate that limited, small spatial precision (Ac < 1°) and
accuracy (Pr < 0.5°) errors do not significantly impact movement time,
understanding the relationship between these interaction characteristics
and their respective thresholds is also crucial. Thus, we plan to system-
atically analyze thresholds across various interaction scenarios in the
future and will explore potential dependencies between these thresholds
and interaction characteristics. Given the susceptibility of gaze-based
input to fatigue, exploring how different levels of task difficulty impact
fatigue during gaze-based steering tasks will be important for designing
long-duration applications.

9 CONCLUSION

In this paper, we presented our exploration of gaze-based steering
interaction for virtual reality (VR) systems, focusing on the effect of
the spatial precision and accuracy of eye-trackers on steering tasks.
Two user studies were conducted to explore and model gaze-based
steering in VR. The first study collected user behavior data for various
path characteristics and eye-tracking conditions. The results enabled
us to formulate four novel models, where the best one achieved an
adjusted R? of 0.956 and delivered a 16% improvement in movement
time prediction and 26.9% and 26.5% enhancements in AIC and BIC,
respectively. Data from the second study with varied technical settings,
such as a different sampling rate and a different VR HMD, helped
confirm the robustness and predictability of our models. Overall, our
work improves our understanding of the effects of eye-tracker precision
and accuracy on gaze-based steering interaction in VR systems.
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