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Figure 1: (a-c) depict the developed auxiliary feedback mechanisms, categorized into visual, auditory, and haptic feedback modali-
ties, each incorporating three types: Binary, Continuous, and Partial, resulting in nine feedback mechanisms. For example, in the
visual feedback context, the Binary type indicates that the target turns red when the controller hits it. The Continuous type shows
a gradual color change to red as the controller approaches the target, while the Partial type combines this gradual color change
with a brightening effect upon hitting the target (see Fig. 2 and Sec. 3). (d) shows the modality fusion used in Study 2, and (e)
demonstrates our experimental setup.

ABSTRACT

Proximity-based feedback provides users with real-time guidance
as they approach an interaction goal. This type of feedback is par-
ticularly useful for tasks that require guidance during the interac-
tion process, such as selecting moving targets. This work explores
proximity-based feedback types and modalities to improve the se-
lection of moving targets in VR by leveraging three feedback types
that combine visual, auditory, and haptic modalities. We evalu-
ated the performance of these mechanisms through two user stud-
ies, analyzing both objective data (e.g., selection time, error rate)
and subjective data (e.g., user experience, preferences) to explore
the characteristics of feedback types across different modalities and
to examine the roles of various modalities within multimodal com-
binations. Our findings suggest optimal selection mechanisms for
developers and should be tailored to different goals: achieving user
precision, enabling quick movement to a target, considering task
duration, and enhancing entertainment value. We also discuss ap-
plications that correspond to these different perspectives.

Index Terms: Virtual Reality, Moving target selection, Multi-

*Corresponding author (e-mail: hainingliang@hkust-gz.edu.cn).
This work was supported in part by the National Natural Science Founda-
tion of China (#62332017, #62172397). This research was reviewed and
approved by the University Ethics Committee of Xi’an Jiaotong-Liverpool
University (ER-LRR-1288940720240528160151).

modal interaction and perception, Feedback Mechanism

1 INTRODUCTION

As virtual reality (VR) technology advances, there is a need for in-
terfaces that can support the efficient performance of complex tasks.
One such task is selecting moving targets, which is a key compo-
nent in various interactive systems [57, 51]. It is relevant to a wide
range of domains, such as interactive videos [39] and game devel-
opment [17], as well as emerging applications like virtual training
[49] and data visualization [24]. However, selecting moving targets
presents unique challenges to users, especially in VR. Users must
continuously track the target’s motion. This involves accurately an-
alyzing its trajectory, speed, and, more relevant to VR, depth while
precisely controlling an input device to achieve selection. This re-
quires users to have a high level of cognitive ability and operational
control [23]. Therefore, selecting moving targets in VR can be chal-
lenging. Improving the efficiency and accuracy of this process can
enhance user performance and experience while offering more de-
grees of freedom, allowing users to tailor task difficulty to their
individual preferences or skill levels.

Previous works have proposed various techniques to assist users
in this task [29]. For example, the Comet technique [31] adds
an additional selectable area at the tail of the moving target based
on its speed, the Sticky Cursor technique [38] automatically fol-
lows the moving target when the cursor contacts the target, and
the Ghost technique [31] provides a static proxy of the moving tar-
get. While supportive, some techniques often have a high learning
curve, while others add additional visual elements, making the en-
vironment cluttered and, in turn, increasing the difficulty of distin-
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guishing between targets. Additionally, these techniques are highly
sensitive to specific parameters and scenarios, as they alter the in-
terface layout [55].

Given the issues of these techniques, alternative approaches,
such as feedback mechanisms, have been proposed to enhance user
experience and task efficiency. One of the most intuitive methods
to achieve this is via different sensory feedback, including visual,
auditory, or tactile (and their combination). Their use could be in
the different phases when selecting a target. For instance, when a
mouse pointer enters the boundary of a target, users may receive
signals such as visual highlights or vibrations, confirming that the
pointer is correctly positioned and the object is selectable [12]. The
advantages of feedback mechanisms lie in their low learning cost,
minimal impact on interface layout, and independence from specific
parameter constraints. However, compared to other assistive tech-
niques, such as enlarging selectable areas, feedback mechanisms
typically offer weaker assistive effects and, at times, have limited
impact on improving user performance, posing challenges in prac-
tical applications [46]. To balance low learning costs, maintain
a clean interface, and enhance user assistance, various improve-
ments to traditional feedback mechanisms have been widely ex-
plored [4]. Particularly relevant to our work is proximity-based
feedback [6, 25], which adjusts the intensity of feedback based
on the distance between the intended target and the pointing de-
vice used. Proximity feedback includes binary feedback (provid-
ing feedback when the target is reached) and continuous feedback
(gradually increasing feedback intensity as the user approaches the
target).

Previous work using proximity-based feedback has primarily fo-
cused on selecting stationary targets or scenarios without visual as-
sistance [6, 26]. In the context of moving targets, proximity-based
feedback types may yield different outcomes, as individual users
perceive the speed and direction of targets independently when at-
tempting to point to moving targets [15]. To our knowledge, there
is limited research on multimodal feedback mechanisms designed
explicitly for selecting moving targets in VR. Given the potential
and unique affordances of feedback mechanisms as intuitive and
complementary input approaches, it is necessary to deepen our un-
derstanding of different feedback types based on proximity (such as
binary, continuous, and integrated binary-continuous) and their ef-
fects on users’ ability to select moving targets across various modal-
ities, including visual, auditory, and tactile, providing deeper in-
sights into the design of VR systems.

In this paper, we conducted two experiments to explore the ef-
fectiveness of different feedback types in assisting users’ selection
of moving targets across various modalities, including visual, au-
dio, and haptic. We first developed binary and continuous feedback
types based on the optimal parameters for users’ perception of tar-
get direction, and then introduced a novel feedback type that inte-
grates elements of both, which we refer to as ‘partial’. These three
feedback types and three modalities led to nine feedback mecha-
nisms (see Fig. 1). We then conducted a user study in which we
compared the nine feedback mechanisms based on objective data
(time and error rate) and subjective data (empirical scales and rank-
ings), using target size and movement speed as task conditions. The
results revealed the characteristics of each feedback type across dif-
ferent modalities (see Sec. 7). We found that (1) binary feedback
effectively assists users in determining the selection time, (2) con-
tinuous feedback enables users to locate targets more quickly, and
(3) partial feedback under the visual modality combines the advan-
tages of both binary and continuous feedback. However, in auditory
and haptic modalities, partial feedback results in redundant details
because multiple types are used within a single channel. Previ-
ous studies on static target selection show that continuous feed-
back interferes with selection tasks because it requires more time
for calibration despite its ability to locate targets quickly [6, 7]. In

contrast, for selecting moving targets, continuous feedback signifi-
cantly outperforms no feedback in both time and error rate because
it supports locating targets quickly. Based on the study results, we
then selected the most optimal feedback type for each modality and
carried out a second experiment to investigate the effects of their
combinations (see Sec. 10.1). The second study’s findings indicate
that while auditory feedback does not significantly enhance perfor-
mance, it plays a crucial role in enhancing user experience, espe-
cially since it is more entertaining to use. Unlike selecting station-
ary targets, visual feedback remains the most important mechanism
to enhance performance and reduce errors.

In short, the main contributions of this paper include: (1) De-
velopment and exploration of nine feedback mechanisms by com-
bining visual, auditory, and haptic modalities with three proximity-
based feedback types (binary, continuous, and partial) to optimize
moving target selection in VR (see Study 1 in Sec. 5). (2) An ex-
ploration of the properties of each modality through various combi-
nations, revealing the unique role of each in the process of selecting
moving objects (see Study 2 in Sec. 8). (3) A set of design recom-
mendations for when to use the various feedback mechanisms based
on the task at hand (see Sec. 10.2) and some example scenarios.

2 RELATED WORK

In this section, we first introduce common techniques for selecting
moving targets. Then, we explore the application of multimodal
feedback in selection tasks, focusing on proximity-based feedback
types and their variations. We further discuss the optimization of
proximity-based feedback types in VR environments.

2.1 Moving Target Selection

Previous studies have extensively investigated moving targets to en-
hance performance and user experience using various input meth-
ods and modalities. These input methods include, but are not lim-
ited to, styluses [34] and mice [35], while the modalities encompass
the use of hands [36] and eye gaze [32]. In addition, previous work
has attempted to understand the difficulty and uncertainty of select-
ing moving targets by establishing models to predict selection time
and error rate. Hoffmann [33] introduced a steady-state position
error model and developed a model for predicting movement time
(MT) when selecting moving targets, revealing the relationship be-
tween target speed and selection time and demonstrating that in-
creased target speed significantly prolongs selection time. From
the perspective of predicting error rates, Huang et al. modeled the
endpoint distribution of moving targets and established a trivariate
Gaussian model for selecting 1D and 2D moving targets [35]. They
further demonstrated that increasing the speed of a target signifi-
cantly affects selection error rate.

Techniques for improving user efficiency in selecting moving
targets are broadly divided into two main approaches: (1) reduc-
ing effective pointing distance and (2) using static proxies. Ex-
amples from the first group include techniques such as Area Cur-
sors [65], which increase the size of the cursor, and Bubble Cur-
sors [27], which dynamically change the cursor size based on the
distance to the nearest target. VTE [28] also belongs to this group,
as it transforms space into a Voronoi diagram, effectively increas-
ing the selectable area of all targets until they fill the entire space.
Likewise, DynaSpot adjusts the cursor size based on its movement
speed. These techniques enhance selection performance by reduc-
ing the distance between the cursor and the target or expanding the
target’s selectable area. Hasan et al. proposed a method that in-
creases the selection area by calculating the user’s selection area
based on the trajectory and speed of the moving target, similar to a
comet’s trail [31].

For enhancing static management, Hasan et al. proposed leaving
a static ”ghost” of the target based on its trajectory without stopping



the target’s motion [31]. Another method involves pausing all tar-
gets in the scene during the selection process [30]. However, most
of these techniques do not consider occlusion issues specific to 3D
environments or the importance of interface layout [5]. Hasan et al.
acknowledged that their techniques could not be effectively used in
dense environments because these methods increase the selection
area, altering the scene layout [55]. This alteration leads to scene
overlap and confusion, which is not ideal or even unacceptable in
certain scenarios. Among the techniques that do not alter the layout,
the Hook technique [11] predicts selection based on the distance of
the user’s cursor to possible targets. By visually emphasizing pos-
sible candidate targets, their approach supports improved selection
time [44]. These techniques are sensitive to certain parameters and
are often scenario-specific.

2.2 Multi-sensory Attentional Cues for target selection
Previous works have shown that providing multimodal feedback
can significantly enhance task performance and reduce perceptual
load without increasing the user’s overall workload [20]. As a crit-
ical component of interactive interfaces, multimodal feedback for
target selection tasks has been widely explored, particularly in sce-
narios involving static and small targets, but it is commonly applied
to mouse-based selection and in mobile device contexts [13].

Anthony et al. investigated the role of visual feedback in touch
screen interactions for children [4]. Their findings revealed that
the absence of visual feedback led to an increase in average er-
rors. However, it is important to note that an overreliance on visual
feedback can potentially diminish auditory and tactile perceptual
abilities, thereby increasing the load on the visual system [56].

For audio feedback, Akamatsu et al. discovered that it did not
improve overall selection time but reduced the time users spent
dwelling on the target [3]. Batmaz et al. found that auditory feed-
back could effectively increase task throughput [8]. The study of
spatial audio in aiding selection reported in [52] and Canales et
al.’s work [16] indicated that auditory feedback was more impor-
tant than visual feedback in VR. Finally, Cockburn et al. found that
audio feedback could effectively reduce the average selection time
for small targets [19].

Haptic feedback has been applied to improve selection in mobile
interactions, such as key selection in touch-screen keyboards [14].
Akamatsu et al. integrated haptics into the mouse for better inter-
action with targets [2]. Ahmaniemi et al. explored the effect of
dynamic haptic feedback on finger control [1].

Li et al. examined the speed-accuracy trade-off between visual-
audio-haptic feedback [45]. Multimodal sensory feedback has also
been compared for tasks and positioning in constrained scenar-
ios [9], and it has been shown that choosing the appropriate modal-
ity feedback can enhance user selection efficiency and reduce error
rates [40]. To our knowledge, no research has explored the benefits
of active selection of moving targets through multimodal feedback
mechanisms. The only investigation into feedback mechanisms for
selecting moving targets is by Li et al. [46]. However, their study
merely required users to confirm the selection of moving targets
within a time window, without involving any active aiming by the
users, and thus does not reflect the characteristics of selecting mov-
ing objects. To address this gap, our current work investigates the
impact of visual, auditory, and haptic modalities on selecting mov-
ing targets and explores the effects of combining different modali-
ties.

2.3 Proximity-Based Feedback Types
VR systems, compared to real-world interactions, often provide in-
sufficient feedback, resulting in imprecise target localization and
reduced task efficiency [59]. To address this limitation, Ariza et
al. [6] introduced proximity-based feedback, which extends tradi-
tional feedback mechanisms by correlating feedback intensity with

the spatiotemporal relationship to the target. This approach aims
to facilitate the rapid spatial localization of targets. In general,
proximity-based feedback is categorized into two types: Binary and
Continuous. Binary feedback is triggered when the user enters the
target’s selectable area, while continuous feedback modulates the
intensity so that it is inversely proportional to the user’s distance
from the target.

Ariza et al. [6] have shown that proximity-based feedback can
significantly enhance throughput in 3D target selection tasks, par-
ticularly during the correction phase, thus improving overall user
performance. Its efficacy has been corroborated across various
modalities and contexts. Gao et al. [25] reported that continuous
auditory feedback based on proximity enhances the performance
of trajectory-based finger gestures in 2D interfaces. In VR en-
vironments, proximity-based haptic feedback has been shown to
be effective in navigation tasks [7, 47]. Furthermore, continuous
proximity-based multimodal feedback has demonstrated improved
performance in eyes-free target selection scenarios [26]. Lu et
al. investigated the impact of various proximity feedback types on
gesture-based pointing in VR, specifically to address depth percep-
tion challenges [50].

Building upon these findings, our research focuses on optimiz-
ing eyes-free target acquisition performance through continuous
proximity-based multimodal feedback. We aim to examine the ef-
fects of different types of proximity-based feedback on the selection
of moving targets. Additionally, we introduce the concept of partial
feedback, which integrates elements of both binary and continuous
feedback to enhance selection performance further.

3 PROXIMITY-BASED FEEDBACK TYPES FOR DIFFERENT
MODALITIES

In this section, we introduce several proximity-based feedback
types developed for different modalities based on prior research [6].

• Binary Proximity-Based Feedback: This type represents the
most common type. Feedback is activated only when the cur-
sor enters the target area; otherwise, no feedback is provided.
The functional relationship between feedback intensity and
distance is illustrated in Fig. 2a.

• Continuous Proximity-Based Feedback: As defined by Ariza
et al. [6], this type continuously modulates intensity based
on the distance between the user’s cursor and the target cen-
ter. The maximum feedback intensity is experienced when the
cursor is at the target’s center. The functional relationship be-
tween feedback intensity and distance is illustrated in Fig. 2b.

• Partial Proximity-Based Feedback: This novel approach
combines both binary and continuous feedback types. Feed-
back is continuously given and varies based on the cursor’s
distance from the target center, reaching maximum intensity
at the center. Likewise, for the binary aspect, feedback is
activated only when the cursor is within the target area but
in a different dimension (e.g., for partial-based haptic feed-
back, the frequency is continuously changing, but the inten-
sity only changes once). The functional relationship between
feedback intensity and distance for this combined approach is
illustrated in Fig. 2c.

To enhance our understanding of the feedback mechanisms, we
next outline the configurations of binary, continuous, and partial
feedback types across different modalities. For Binary feedback,
visual feedback is represented by the R value in RGB, which ranges
from 0 to 255. The color red was specifically chosen for its high
contrast in proximity cues and for its proven impact on attracting
attention [43]. Regarding our audio and haptic modalities, we as-
signed optimal frequency ranges to each. For the auditory modality,
we focused on frequencies between 0 and 250 Hz, with an em-



Figure 2: (d) The different components when selecting a moving target, (a-c) The function graphs of Binary, Continuous, and Partial feedback
types showing the relationship between distance and feedback intensity.

phasis on around 250 Hz because it provides the highest localiza-
tion accuracy [66] and has proven effective in tracking tasks [62].
Meanwhile, for haptic feedback, we employed vibration frequen-
cies spanning 0 to 300 Hz, where 300 Hz has been demonstrated to
be the highest sensitivity that the human finger can perceive [10].

For Continuous feedback, Visual feedback is represented by the
R value in RGB, ranging from 51 to 255. Auditory frequency
ranges from 50 to 250 Hz, while the haptic vibration frequency
ranges from 60 to 300 Hz. The choice of highest audio and vi-
bration frequency aligns with the optimal values identified in our
binary feedback. In this type, 1/5 of the feedback is provided at the
initial value, allowing users to perceive their distance to the target
in real-time.

For Partial feedback, all sensory modalities are divided into two
stages: Stage 1 (Continuous) and Stage 2 (Binary). Before reaching
the target, feedback is in Stage 1. Once the cursor hits the target,
it switches to Stage 2. In the visual modality, Stage 1 ranges from
R(51) to R(255), while Stage 2 corresponds to emission intensity
ranging from 0 to 2. In the auditory modality, Stage 1 frequency
ranges from 50 to 250 Hz, aligning its upper limit with the binary
and continuous modes, while Stage 2 loudness spans 0 to 6 dB.
In the haptic modality, Stage 1 frequency ranges from 60 to 300
Hz—-again matching the same upper limit—-while Stage 2 inten-
sity ranges from 0 to 120.

4 RESEARCH QUESTION

Our review has pointed to a noticeable gap in our understanding of
the correlation between user behavioral patterns and different feed-
back mechanisms in selecting moving targets and, in particular, of
the impact of binary, continuous, and partial feedback types across
visual, auditory, and haptic modalities. To bridge this gap and help
frame our work, we formulated four research questions:

RQ1: What are the properties of the partial proximity-based
feedback in different modalities? As described in Sec. 2.3, previous
work has investigated the impact of binary and continuous feedback
on user performance. Nevertheless, the integration effects of binary
and continuous feedback remain unexplored. Therefore, it is nec-
essary to investigate whether the partial feedback type can combine
the advantages of continuous and binary feedback and identify its
potential drawbacks.

RQ2: Can adding different feedback types across various modal-
ities enhance users performance in selecting moving targets? Nu-
merous studies have shown that feedback mechanisms can greatly
enhance user selection performance. This improvement is observed
for both static and moving targets, particularly in situations where
precise aiming is not required, and users do not need to actively
move their bodies to input [6, 46]. However, the exploration of
feedback types has only been conducted in static target selection
tasks. As such, further exploration of the properties of these feed-
back types for moving targets is still needed.

RQ3: What are the properties of binary, continuous, and par-
tial feedback types in different modalities? In previous work on

static target selection tasks, researchers have already discussed the
throughput of binary and continuous feedback in different modal-
ities. However, objective data (such as completion time and error
rate) alone cannot fully evaluate the effectiveness and usability of
feedback types across different modalities. In particular, in vari-
ous task scenarios, designers need to provide appropriate feedback
types based on specific needs. Therefore, it is necessary to discuss
the properties of different feedback types within each modality.

RQ4: Can the combination of multiple modalities further en-
hance user performance and experience? In previous studies, mul-
timodal integration has been shown to effectively enhance user per-
formance in certain scenarios, while in other cases, it can lead to
feedback overload Sec. 2.2. This is related to whether the chosen
feedback type for each modality is appropriate. Therefore, we aim
to explore the combination of the optimal feedback properties se-
lected for each modality from RQ3 and investigate the differences
between unimodal, bimodal, and trimodal combinations to explore
further their role in selecting moving targets.

5 USER STUDY 1: IMPACT OF DIFFERENT FEEDBACK
TYPES ON VARIOUS MODALITIES

The goal of this study is to compare and evaluate user performance
and experience across three modalities, three feedback types, and a
baseline condition for selecting moving targets.

5.1 Participants, Apparatus, and Materials
We recruited 20 participants (12 females and 8 males), aged be-
tween 18 and 30 (M = 22.7, SD = 3.4), with diverse educational
backgrounds (computer science, arts, robotics, etc.) from a local
university. All participants had normal or corrected-to-normal vi-
sion, and none reported issues with color vision. All participants
were right-handed. Fifteen participants reported being familiar or
very familiar with VR HMDs. The experiment was conducted on
an Intel Core i9 processor PC with an NVIDIA GTX 4060 GPU.
The program was developed using C#.NET and ran on the Unity3D
platform. We used a Meta Quest 3 to provide the virtual environ-
ment and its controllers for interaction.

5.2 Test Environment and Task
In the experimental setup, a small ball was positioned at the tip of
the right controller. This was treated as the collision range for the
handle, representing the most basic form of the virtual hand [64]. A
starting sphere was placed 20 cm in front of the user, requiring the
user to collide with it to initialize the task. This ensured that users
could re-acquire depth perception at the beginning of each task.
One second after initialization, a moving sphere was generated 60
cm in front of the user as the selection target, moving in a randomly
chosen direction along the X-Y plane.

The task required users to move the small ball on the controller as
quickly and accurately as possible to the center of the target sphere.
Participants had to press the trigger button on the controller to cap-
ture the target. A selection was deemed successful if the button was



pressed while the small ball intersected the target sphere. Upon a
correct selection, the system proceeded to the next trial. If the tar-
get was missed, the target sphere remained visible. Once a correct
selection was made, the current target sphere disappeared, and par-
ticipants needed to return their arms to the initial position to touch
the starting sphere again for the next task.

Given that moving targets could be difficult to select if located
outside the user’s field of view, we employed a bounded space an-
chored in the virtual environment that would position all moving
targets in front of the user, following the approach by Chen et al.
[18]. This approach would allow us to analyze the effects of target
speed, width, and technique without confounding factors, such as
searching for out-of-view targets. The bounded space was designed
based on a reachable workspace within arm length [58], with a ra-
dius of 60 cm. To prevent users from anticipating the rebound path
of the moving object, the outline of our bounded space was invis-
ible. Given that previous work [63] showed that the direction of
motion relative to the target could lead to different targeting strate-
gies, we added a bouncing feature to the boundary of the bounded
space so that whenever the target hits the boundary, it would reflect
and bounce away. Since the boundary was designed to be transpar-
ent, participants could not see its specific area. Consequently, they
were unable to determine whether the target would change direction
due to bouncing and could not predict the target’s next movement
in real time.

5.3 Experimental Design and Procedure

The experiment utilized a (3 × 3 + 1) × 2 × 2 within-subjects
design with four independent variables: Modality, Feedback Type
(with the ”+1” representing the Baseline, where no feedback was
provided, and thus neither Modality nor Feedback Type applied,
creating a distinct standalone condition.), Target Width, and Tar-
get Speed, leading to 40 experimental conditions. To minimize any
carry-over effects, the 2 Width × 2 Speed conditions was counter-
balanced via the Latin Square approach. The order of Modality and
Feedback Type was randomly arranged. The conditions for each in-
dependent variable were as follows: Modality (Visual, Audio, and
Haptic), Feedback Type (Binary, Continuous, and Partial), Target
Width (6 cm, 8 cm), and Target Speed (1 m/s, 1.2 m/s).

Each participant spent approximately 40 minutes completing the
experiment, which was divided into four distinct sessions. First,
participants filled out a demographic questionnaire to provide their
personal information and received a brief introduction to the exper-
iment. They then underwent a minimum of five minutes of training
to familiarize themselves with the techniques and learn about the
tasks and procedures of the formal experiment. After the training,
they proceeded to the formal trials for each condition as specified
in the experimental design. At the end of each session, participants
completed a short version of the User Experience Questionnaire
(UEQ-S) [60], followed by a brief rest. Finally, upon complet-
ing all conditions, participants joined a semi-structured interview
to discuss their preferences and provide feedback.

5.4 Evaluation Metrics

We employed a set of dependent variables encompassing both ob-
jective and subjective measurements.

5.4.1 Objective Measurements

For the objective measurements, we used the average results per
condition and participant for statistical analysis. The objective met-
rics included: Selection Time, which refers to the time (in seconds)
taken to select the target in each trial, and Error Rate, which is the
number of incorrect selections in each trial, specifically instances
where the user pressed the trigger button without intersecting the
target sphere.

5.4.2 Subjective Measures
We also evaluated the techniques based on subjective measure-
ments, including user experience and preference rankings. The sub-
jective metrics included: User Experience Questionnaire (UEQ-
S), a short version comprising eight items to measure user experi-
ence in terms of Pragmatic Quality, Hedonic Quality, and Overall
User Experience, and Preference Ranking and Interview, where
participants ranked the three techniques based on their preferences
for different modalities and provided reasons at the end of the ex-
periment.

6 RESULTS

6.1 Objective Results
From the experiment, we collected 9600 trials (20 participants ×
(3 Modalities × 3 Feedback Type) + Baseline) × 2 Widths × 2
Speeds × 12 repetitions). To analyze selection time and error rate,
we removed outliers where selection times exceeded three standard
deviations from the mean for each condition (261 trials, 2.71%).
Such outliers are typically removed as they likely do not represent
typical selection performance (e.g., minor distractions during the
experiment) and can skew the results for a particular condition [61].
We assessed the normality of the data using both Shapiro-Wilk
tests and Q-Q plots, confirming that completion time and error rate
were normally distributed. We employed a two-way repeated mea-
sures ANOVA (RM-ANOVA), with modality and feedback type as
the within-subjects factors, and used Bonferroni-adjusted pairwise
comparisons to analyze selection time and error rate for each condi-
tion. Since we are interested in the performance of feedback types
under different modalities, we present a detailed analysis of the ef-
fects and interactions between feedback types within each modality.

6.1.1 Selection Time
Fig. 3 a, b, and c illustrate the selection times across modali-
ties, feedback types, and all mechanisms. Results from the RM-
ANOVA tests revealed significant main effects of both MODAL-
ITY (F1.731,32.882 = 57.102, p < 0.001,η2

p = 0.750) and FEED-
BACK TYPE (F2.120,40.281 = 81.919, p< 0.001,η2

p = 0.812) on se-
lection time. Additionally, a significant interaction effect between
MODALITY × FEEDBACK TYPE (F3.626,68.891 = 22.418, p <

0.001,η2
p = 0.541) was found for selection time.

Post-hoc tests showed that, in terms of modality, the Base-
Line (M = 2.49,S = 0.94) had a significantly longer selection time
compared to other modalities (p < 0.001). The Haptic modal-
ity was significantly faster than both Visual (M = 2.14,S = 0.82),
(p = 0.027) and Audio (M = 2.17,S = 0.70), (p = 0.007). Regard-
ing feedback type, post-hoc tests indicated that the BaseLine had a
significantly longer selection time than all other feedback types (all
p < 0.001). The Continuous feedback type (M = 2.02,S = 0.73)
was significantly slower than the Partial ((M = 1.89,S = 0.64),
(p < 0.001). Further comparisons showed that Visual Continuous
feedback mechanism ((M = 2.11,S = 0.83) was slower than Visual
Partial (M = 1.85,S = 0.61).

6.1.2 Error Rate
Fig. 3 d, e, and f, respectively, display the error rate between modal-
ities, between feedback types, and across all conditions. Results
from the RM-ANOVA tests revealed significant main effects of both
MODALITY (F1.709,30.764 = 33.923, p < 0.001,η2

p = 0.653) and
FEEDBACK TYPE (F1.480,26.643 = 36.599, p< 0.001,η2

p = 0.670)
on error rate. Additionally, a significant interaction effect between
MODALITY × FEEDBACK TYPE (F4.023,72.423 = 15.137, p <

0.001,η2
p = 0.457) was found for error rate.

Post-hoc tests showed that, in terms of modality, the BaseLine
(M = 0.28,S = 0.09) had a significantly higher error rate compared
to other modalities (p < 0.001). The Haptic (M = 0.12,S = 0.05)



modality had a significantly lower error rate than Audio (M =
0.17,S = 0.07), (p = 0.006). Regarding feedback type, post-hoc
tests indicated that the BaseLine had a significantly higher error
rate than all other feedback types (all p < 0.001). The Binary
(M = 0.13,S = 0.04) feedback type had a lower error rate than the
Continuous (M = 0.17,S = 0.08), (p = 0.05). The Partial feed-
back type (M = 0.13,S = 0.05) also had a lower error rate than the
Continuous (p = 0.006). Further comparisons showed that Visual
Continuous feedback mechanism (M = 0.18,S = 0.06) had a higher
error rate than Visual Partial (M = 0.11,S = 0.04), (p = 0.043).

6.2 Subjective Results
We performed RM-ANOVAs and pairwise comparisons with Bon-
ferroni adjustments to the ART-transformed questionnaire results,
including UEQ scores, and a semi-structured interview with rank-
ing.

6.2.1 User Experience
RM-ANOVA revealed a significant main effect on overall user ex-
perience for both MODALITY (F3,57 = 16.84, p < 0.001,η2

p =

0.312) and FEEDBACK TYPE (F3,57 = 20.82, p < 0.001,η2
p =

0.274). A significant interaction effect between MODALITY ×
FEEDBACK TYPE (F9,171 = 26.19, p < 0.001,η2

p = 0.413) was
found for user experience.

Technique Pragmatic Hedonic Overall
BaseLine -1.75 -2.82 -2.28

Visual Binary 1.30 (>avg.) -0.32 0.49
Visual Continuous -0.25 0.38 0.07

Visual Partial 2.00 (>avg.) -1.02 0.49

Audio Binary 2.05 (>avg.) 2.35 (exc.) 2.20 (exc.)

Audio Continuous 1.35 (>avg.) 1.55 (>avg.) 1.45 (>avg.)

Audio Partial 1.15 (>avg.) 2.10 (>avg.) 1.63 (>avg.)

Haptic Binary 2.55 (exc.) 1.08 (>avg.) 1.82 (>avg.)

Haptic Continuous 0.72 0.77 (>avg.) 0.74 (>avg.)

Haptic Partial 1.23 (>avg.) -0.10 0.57
Table 1: Results from the short version of User Experience Question-
naires (UEQ-S), showing the pragmatic quality, hedonic quality, and
overall quality of each technique. In the table, “>avg.” means “above
average” ( orange cells), “exc.” means “excellent” ( yellow cells).

Post-hoc tests showed that, in terms of MODALITY, BaseLine
(M = −2.28,S = 1.09) had a significantly lower score compared
to Audio (M = 1.76,S = 0.59) and Haptic (M = 1.04,S = 0.92),
(all p < 0.001). Audio had a significantly higher score compared
to Visual (M = 0.35,S = 1.13), (p = 0.017). Regarding feed-
back types, post-hoc tests indicated that BaseLine had a signifi-
cantly lower score than all others (all p < 0.001). Binary feedback
type (M = 1.50,S = 0.78) was significantly higher than Continu-
ous (M = 0.75,S = 0.91), (p = 0.004) and Partial ((M = 0.89,S =
0.96), (p= 0.012). Further comparisons showed that Haptic Binary
feedback mechanism (M = 1.82,S = 0.48) was significantly higher
than Haptic Partial (M = 0.57,S = 0.91), (p = 0.002). Audio Bi-
nary feedback mechanism (M = 2.20,S = 0.42) was higher than
Audio Continuous (M = 1.45,S = 0.61), (p = 0.027). (See Tab. 1)

6.2.2 Interview and User Ranking
Fig. 3 (g, h, and i) shows participants’ rankings of different FEED-
BACK TYPE based on their preferences for each MODALITY. In
the Visual Modality, 11 participants (55%) ranked the Partial feed-
back type as their top choice, followed by Binary (8 participants,

40%) and Continuous (1 participant, 5%). BaseLine was unani-
mously ranked last (20 participants, 100%). Sixteen participants
(80%) preferred Partial and Binary, stating these feedback types
”provide a sense of confidence” and ”help clarify if the target ob-
ject is fully reached” (P2-P4, P11). P6 noted, ”The Partial feedback
type makes tracking the target simpler and allows for quicker dis-
tance estimation to the target.”

For the Auditory Modality, 11 participants (55%) favored the Bi-
nary feedback type, followed by Partial (5 participants, 25%) and
Continuous (4 participants, 20%). Seven participants (5%) found
the continuously varying audio in Continuous and Partial types
uncomfortable. P1, P2, and P4 remarked, ”The wide frequency
changes in a short time cause discomfort when selecting.” P6 men-
tioned: ”Auditory feedback is only noticeable during long-distance
movement; subtle frequency changes are undetectable, especially
when close to the target.” Similar to the visual modality, 15 partic-
ipants (75%) indicated that Binary and Partial feedback enhanced
their confidence. It is worth mentioning that users reported a per-
ceived delay between hearing the sound and pulling the trigger dur-
ing the interview.

In the Haptic Modality, 12 participants (60%) preferred the Bi-
nary feedback type, followed by No Feedback (5 participants, 25%)
and Partial (3 participants, 15%). Seventeen participants (85%) re-
ported that continuous vibration caused hand numbness, with P13-
P16 stating that constant vibration makes selection during move-
ment inaccurate. Notably, five participants preferred No Feedback
over Continuous and Partial feedback type in this modality.

7 DISCUSSION

7.1 Effects of Partial Proximity-Based Feedback Type in
Different Modalities (RQ1)

Our objective data indicate that the Partial feedback outperforms
both Binary and Continuous feedback in terms of selection time and
error rate, with this advantage being particularly pronounced in the
visual modality. In the auditory and haptic modalities, Partial feed-
back performs comparably to the Binary feedback but consistently
surpasses the Continuous feedback. This pattern is further corrobo-
rated by subjective data, where the Partial feedback scored lower in
pragmatic and hedonic qualities for auditory and haptic modalities.
User feedback highlighted difficulties in processing multiple layers
of feedback, particularly when dealing with continuous audio and
vibration signals simultaneously. This finding aligns with prior re-
search suggesting that overlaying multiple feedback types within a
single channel can lead to user confusion and discomfort [21, 37],
especially in complex tasks involving spatial aiming at moving ob-
jects [41]. Despite these challenges, our objective data demonstrate
that the Partial feedback can significantly enhance task efficiency,
indicating its potential to optimize performance in complex scenar-
ios without substantially compromising user experience.

7.2 Effect of Adding Feedback In Different Modalities
(RQ2)

RM-ANOVAs revealed a significant influence of adding feedback
on movement time and error rates, which is consistent with previ-
ous studies [26]. On the UEQ scale, the Baseline scored the lowest
in both Pragmatic and Hedonic qualities. User rankings and inter-
views revealed that participants found it challenging to grasp depth
and motion direction in selection tasks without feedback, describ-
ing the feedback-free selection as very monotonous. Our results
demonstrate that, for the selection of moving objects that require
active spatial aiming, adding feedback as an auxiliary cue is essen-
tial to enhance user performance and experience.

Notably, we found that Continuous feedback also outperforms
the Baseline for selecting moving objects. This finding contrasts
with previous conclusions about stationary object selection. For



Figure 3: Objective measurement plots: (a-c) Movement time for the selection task, (d-f) Selection task error rate, categorized by (a, d) Modality,
(b, e) Feedback type, and (c, f) All conditions combined. (g-i) Ranking of each Feedback type across different Modalities. Error bars represent
95% confidence intervals (*p < 0.05, **p < 0.01, ***p < 0.001). Note: All Baseline comparisons with other conditions have p-values < 0.001,
but these are not explicitly marked.

example, in a previous study, Ariza et al. [6] suggested that with sta-
tionary objects, users sometimes get used or accustomed to point-
ing to the object (since it is static and its position remains the same
across several trials), leading to lower accuracy demands for tar-
get localization when selecting stationary objects. In such cases,
users may not fully take advantage of the benefits offered by Con-
tinuous feedback. However, in our task, since the target’s initial
movement direction is not known a priori, and its direction changes
upon bouncing off invisible transparent boundaries (see Sec. 5.2),
users cannot predict based on prior knowledge or experience the tar-
get’s location. As a result, the Continuous feedback changes help
users better understand the spatial relationship between the con-
troller and the target, helping them adjust the direction of their hand
movement. Additionally, in target selection tasks, we can divide
the selection action into two main parts: (1) rapid target localiza-
tion and (2) calibration [48]. Ariza et al. noted that one drawback
of Continuous feedback in static target selection is that users, by
quickly approaching the target through the feedback, experience a
reduced calibration area, which affects accuracy. However, in mov-
ing target selection, the issue of a small calibration area does not
arise, making Continuous feedback more advantageous and helpful
in this context.

7.3 Evaluation of the Attributes of Different Feedback
Types Across Various Modalities (RQ3)

In the visual modality, the Partial feedback type significantly out-
performed the Continuous feedback in terms of selection time. It
exhibited the same error rate as Binary feedback, which was better
than Continuous feedback. This suggests that Binary feedback in
the visual modality allows users to better gauge the timing of their
actions, thus reducing error rates [22]; this may be because users
are more sensitive to binary changes in feedback (from absence to
presence). Although with continuous feedback, users reported be-
ing better able to grasp spatial relationships while moving (such

as whether they were approaching an object), the timing of the se-
lection may be less helpful, leading to a higher error rate. Partial
feedback, combining the advantages of both Continuous and Binary
feedback, showed the best preference in user experience, with 55%
of users ranking it as the best visual feedback type. Therefore, we
selected Partial feedback as the optimal type for the visual modality.

For the auditory modality, while the difference was not statisti-
cally significant, Binary feedback proved superior in terms of both
selection time and error rate. Subjectively, Binary feedback also
outperformed Continuous and Partial feedback in both pragmatic
and hedonic evaluations. User interviews revealed that, for con-
tinuous audio feedback, users can detect frequency changes when
initially approaching the object quickly. However, in the proximity
zone, these changes become less noticeable, and users are not sen-
sitive enough to discern the reduced distance [42]. Consequently,
we chose the Binary feedback as the best for the auditory modality.

With the haptic modality, Binary feedback also showed the best
performance in selection time and error rate compared to Continu-
ous. Users found continuous haptic vibrations uncomfortable, lead-
ing to hand numbness and decreased sensitivity over time [53].
Subjective data supported this, with Continuous and Partial feed-
back rated lower in user experience and workload compared to Bi-
nary feedback. 60% of users selected Binary feedback as the best
haptic feedback type. Based on these findings, we selected Partial
feedback for the visual modality and Binary feedback for both au-
ditory and haptic modalities as the optimal types.

8 USER STUDY 2 - IMPACT OF MULTIMODAL COMBINA-
TIONS

The second study aims to compare and evaluate user performance
and experience by combining the best feedback identified in Study 1
across different modalities. Selecting inappropriate feedback types
can lead to poor design, often resulting in negative experimental
outcomes [5]. Based on the discussion of the Study 1 results, we



have chosen Partial feedback for the visual modality, Binary feed-
back for the auditory modality, and Binary feedback for the hap-
tic modality as the best feedback type for unimodal interactions.
Specifically, we aim to explore the differences between multimodal
and unimodal interactions under optimal feedback type conditions.

8.1 Participants, Apparatus, and Materials
This study took place about 10 days after Study 1 and involved 16
participants (6F/10M), between 19 and 30 years old (M = 23.1, SD
= 3.8), from the same university campus for this study. All partici-
pants had normal or corrected-to-normal vision, and all were right-
handed. Nine participants reported being familiar or very familiar
with VR HMDs. We used the same apparatus and materials as in
Study 1 (see Sec. 5.1). Eight of the participants had also partici-
pated in the first study.

8.2 Design, Procedure, and Metrics
We employed the same experimental setup and tasks as in Study 1
(see Sec. 5.2). The experiment utilized a 7 × 2 × 2 within-subjects
design with three independent variables: Feedback Type, Feedback
Width, and Target Speed, resulting in 28 experimental conditions.
The seven Feedback Types are Visual, Audio, Haptic, Visual-Audio,
Visual-Haptic, Audio-Haptic, and Visual-Audio-Haptic. We used
the same metrics as in Study 1 (see Sec. 5.4).

9 RESULTS

9.1 Objective Results
We collected 5,376 trials (16 participants × 7 Feedback Types ×
2 Widths × 2 Speeds × 12 repetitions). We discarded the outliers
(78 trials, 2.6%) to analyze the selection time and error rate. We
employed RM-ANOVA with Greenhouse-Geisser correction to an-
alyze the effect of each factor. Pairwise comparisons with Bon-
ferroni adjustment were used for technique comparison. Since we
were interested in how the techniques were affected by different en-
vironmental factors, we focused only on the effects and interactions
related to the factor Feedback Type.

9.1.1 Selection Time
Fig. 4a displays the selection times across feedback types. Re-

sults from the RM-ANOVA tests revealed significant main effects
of FEEDBACK TYPE (F3.25,48.74 = 5.204, p < 0.001,η2

p = 0.258)
on selection time. Post-hoc tests showed that Audio (M = 1.93,S =
0.18) was significantly longer than Visual-Audio (M = 1.74,S =
0.13), (p = 0.013) and Visual-Audio-Haptic (M = 1.68,S = 0.09),
(p = 0.013), (p < 0.001). Haptic (M = 1.88,S = 0.25) was signifi-
cantly longer than Visual-Audio-Haptic (p = 0.05).

9.1.2 Error Rate
Fig. 4b shows the error rates between feedback types. Results

from the RM-ANOVA tests revealed significant main effects of
FEEDBACK (F2.931,3.720 = 6.667, p = 0.001,η2

p = 0.308) on er-
ror rate. Post-hoc tests showed that Visual-Audio-Haptic (M =
0.081,S = 0.032) had a significantly lower error rate compared to
Visual (M = 0.124,S = 0.046), (p = 0.01), Audio (M = 0.147,S =
0.054), (p = 0.003), Haptic (M = 0.117,S = 0.039), (p = 0.003),
(p= 0.028), Visual-Audio (M = 0.112,S= 0.029), (p= 0.048), and
Audio-Haptic (M = 0.147,S = 0.049), (p = 0.002). Visual-Haptic
(M = 0.094,S = 0.036) had a significantly lower error rate com-
pared to Audio-Haptic (p = 0.002).

9.2 Subjective Results
As in the first study, we performed RM-ANOVAs and pair-
wise comparisons with Bonferroni adjustments to ART-transformed
questionnaire results, including UEQ scores, and a semi-structured
interview.

9.2.1 User Experience
RM-ANOVA revealed a significant main effect on Pragmatic
Quality (F6,90 = 7.592, p < 0.001,η2

p = 0.292), Hedonic Quality
(F6,90 = 9.437, p < 0.001,η2

p = 0.347), and Overall User Experi-
ence (F6,90 = 8.856, p < 0.001,η2

p = 0.371) among FEEDBACK
TYPE. Post-hoc tests showed that, regarding Overall User Experi-
ence, Visual-Audio-Haptic (M = 2.60,S = 0.27) had a significantly
higher score compared to Visual (M = 1.10,S = 0.43), (p < 0.001),
Audio (M = 1.33,S = 0.83), (p = 0.03), Haptic (M = 1.27,S =
0.65), (p< 0.001), Visual-Audio (M = 1.19,S = 0.58), (p< 0.001),
Visual-Haptic (M = 1.72,S = 0.56), (p = 0.004), and Audio-Haptic
(M = 0.99,S = 1.37), (p = 0.0014). Visual-Haptic (M = 1.72,S =
0.58), was significantly higher than Visual (p = 0.03).

Technique Pragmatic Hedonic Overall
Visual 1.64 (>avg.) 0.56 1.10

Audio 0.97 1.68 (>avg.) 1.33
Haptic 1.37 1.16 1.27

Visual-Audio 1.49 0.89 1.19
Visual-Haptic 2.02 (>avg.) 1.43 (>avg.) 1.73 (>avg.)
Audio-Haptic 1.0 0.98 0.99

Visual-Audio-Haptic 2.57 (exc.) 2.62 (exc.) 2.60 (exc.)
Table 2: Results from the short version of User Experience Question-
naires (UEQ-S), showing the pragmatic quality, hedonic quality, and
overall quality of each technique. In the table, “>avg.” means “above
average” ( orange cells), “exc.” means “excellent” ( yellow cells).

9.2.2 Interview and User Ranking
Fig. 4 shows the participants’ rankings of different FEEDBACK

TYPE based on their preferences. Since the unimodal mechanisms
were extensively discussed in Study 1, this section focuses on the
user interviews regarding bimodal and trimodal feedback combina-
tions.

For the Feedback Type Combinations, 10 participants (62.5%)
preferred the Visual-Audio-Haptic combination, followed by
Visual-Haptic (3 participants, 18.7%), Visual-Audio (2 participants,
12.5%), and Haptic alone (1 participant, 6.25%). Thirteen partici-
pants (21.6%) stated that multimodal combinations ”increased their
confidence in gauging the distance to the target and helped clarify
whether the target was fully reached.” For instance, P2-P4 and P11
noted, ”Although adding audio feedback sometimes caused delays
in reaction, it significantly enhanced the entertainment value, pre-
venting the selection task from becoming too monotonous.” These
reported reaction delays are consistent with findings from previous
research [54], which demonstrated that people’s response times to
haptic stimuli are 28% shorter than those to auditory stimuli. Be-
sides, no additional delay was observed between each modality.

Regarding the Visual-Haptic Combination, P6, P8, and P10 re-
ported that ”Haptic feedback often comes the fastest and is the most
intense stimulus, but prolonged vibration can lead to hand numb-
ness.” Notably, the Visual-Audio-Haptic combination was high-
lighted by most participants as providing the best balance, as it
integrates the advantages of visual cues and haptic feedback with
the added value of audio, enhancing their experience without over-
whelming them.

10 DISCUSSION

10.1 Evaluating Multimodal Combinations (RQ4)
In this study, objective analysis of time and error rate showed
that feedback mechanisms involving visual input consistently per-
formed well. Mechanisms without visual feedback, such as Au-



Figure 4: Objective measurement plots: (a) Movement time for the selection task, (b) Selection task error rate. (c) Ranking of each Mechanism.
Error bars represent 95% confidence intervals (*p < 0.05, **p < 0.01, ***p < 0.001).

dio and Audio-Haptic, exhibited poor performance in terms of er-
ror rates. When comparing bimodal and unimodal interactions,
both Visual-Audio and Visual-Haptic outperformed unimodal in-
teractions. Subjectively, users felt that auditory feedback signifi-
cantly enhanced the hedonic aspect of tasks, while visual feedback
was deemed most critical for pragmatic performance. The trimodal
combination, which incorporates the best feedback mechanisms, ef-
fectively integrated these advantages. Additionally, 62.5% of users
rated this as the best mechanism. Hence, our data indicate that
the trimodal modality is the most effective for tasks involving ac-
tive targeting of moving objects, both objectively and subjectively.
Previous studies, such as the one conducted by Li et al. [46], re-
ported poor performance for trimodal feedback. We attribute these
results to the inclusion of suboptimal feedback mechanisms in their
design, such as discrete visual feedback with color changes (e.g.,
turning red), continuous auditory feedback with volume changes,
and continuous haptic feedback with varying vibration frequencies,
rather than to the complexity of information.

10.2 Design Recommendations and Application

Based on the results of the two studies, we have distilled the follow-
ing four design recommendations with their practical applications.

DR1. For rapid and accurate target selection, use Visual Par-
tial feedback as the foundation. This provides continuous visual
tracking during aiming, reducing selection time. For high-precision
tasks, supplement the interaction with Auditory and Haptic Binary
feedback to improve timing and accuracy. Application: This ap-
proach can be used in a VR football match (see Fig. 5a), where
players need to be selected accurately without disrupting the game
flow.

DR2. When the objective is to locate a target quickly, a combina-
tion of Continuous feedback mechanisms across Visual, Auditory,
and Haptic modalities can work well. Real-time feedback based on
proximity assists users in rapidly approaching the target. Our find-
ings suggest that in scenarios where quickly locating the target is
required, adding the Partial or Binary mechanism as an additional
feedback channel may be unnecessary and could overwhelm the
user with excessive information. Application: This approach can
be applied to Bubble cursor-type interactions in VR (see Fig. 5b),
where speed of target acquisition is prioritized over precision.

DR3. For entertainment-focused applications, consider adding
Binary Auditory feedback. Our UEQ scale results show that this
enhances the hedonic aspect of user experience. However, note that
Auditory feedback alone minimally impacts task performance. For
challenging selection tasks, additional measures may be needed to
boost entertainment value. Application: This strategy can be ap-
plied to VR shooting games (see Fig. 5c), where entertainment
value is the primary consideration.

DR4. In prolonged tasks involving moving object selection,
minimize or avoid Continuous and Partial mechanisms for Audi-
tory and Haptic feedback. Extended exposure to changing sounds

and vibrations can cause user discomfort and desensitization, re-
ducing their effectiveness over time. Application: This recommen-
dation can be helpful in extended VR typing and chat sessions (see
Fig. 5d) that require sustained, prolonged interaction.

Figure 5: (a) Watching a soccer match and selecting a moving player.
(b) Using Bubble Cursor technique to select a moving target. (c)
Playing a shooting game. (d) Typing while walking.

11 LIMITATIONS AND FUTURE WORK

We have identified several limitations in our work that suggest di-
rections for future research. First, we constrained moving targets
to a circular boundary, whereas, in real-world scenarios, objects
can move over much larger areas. We also used only two sets
of speed and size parameters and did not consider extreme situ-
ations—like targets moving at very high speeds—where continu-
ous mechanisms might excel due to faster target detection. Addi-
tional studies are needed to confirm this possibility. Second, we
focused on single-target selection, excluding multiple-target selec-
tion, to create a controlled environment for examining feedback
mechanisms and modalities. As a result, our findings primarily ap-
ply to single-target tasks and may not extend to scenarios where
users must manage multiple distractions or targets. Future work
could explore how these mechanisms and modalities perform under
more complex conditions. Lastly, we are interested in investigat-
ing a wider range of frequencies within a single sensory channel
to deepen our understanding of how different feedback modalities
function. By broadening the scope of our experiments, we hope to
gain more comprehensive insights into designing effective feedback
mechanisms for diverse real-world applications.

12 CONCLUSION

In this work, we introduced several feedback approaches and exam-
ined their performance to optimize the selection of moving targets
in virtual reality (VR). Our work found that in unimodal channels
with (1) binary feedback reduces user error rates, (2) continuous
feedback helps users to approach targets quickly, and (3) partial
feedback effectively provides additional information without di-
minishing user experience. We also combined and evaluated these
feedback types to understand the role of each modality in multi-
modal settings for moving object selection tasks. Our results show
that (1) visual is the most important modality for determining mov-
ing target direction, (2) audio feedback can enhance user engage-
ment and sense of fun, and (3) haptic feedback can significantly



reduce error rates. Based on our findings, we provide several rec-
ommendations and insights regarding multimodal feedback to as-
sist in the design and framing of techniques for selecting moving
objects in VR.
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A SUPPLEMENTAL MATERIAL INSTRUCTIONS

Speed Width Time Mean (s) 95% CI

1.0 0.06 2.054 ± 0.141
1.0 0.08 1.894 ± 0.127
1.2 0.06 2.212 ± 0.178
1.2 0.08 1.898 ± 0.134
1.4 0.06 2.315 ± 0.158

Table 3: Mean Time and 95% CI by Speed and Width
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