Xuning Hu

Xuning.Hu22@student.xjtlu.edu.cn

Education

Xi'an Jiaotong-Liverpool University (XJTLU)

BSc in Information and Computing Science

• Major GPA: 3.78/4.00

Publications

[IEEE VR' 25] Xuning Hu, Xu, W., Wei, Y., Zhang, H., Huang, J., & Liang, H.-N. "Optimizing Moving Target Selection in VR by Integrating Proximity-Based Feedback Types and Modalities." The 32nd IEEE Conference on Virtual Reality and 3D User Interfaces. Accepted [ISMAR' 24] Xuning Hu, Yan, X., Wei, Y., Xu, W., Yue, L., Liu, Y., & Liang, H.-N. "Exploring the Effects of Spatial Constraints and Curvature for 3D Piloting in Virtual Environments." 2024 IEEE International Symposium on Mixed and Augmented Reality. Accepted [IEEE VR' 25] Xu, W, Wei, Y., Xuning Hu, Stuerzlinger, W., Wang, Y., & Liang, H.-N. "Predicting Ray Pointer Landing Poses in VR Using Multimodal LSTM-Based Neural Networks." The 32nd IEEE Conference on Virtual Reality and 3D User Interfaces. Accepted [SUI' 24] Darbar, R., Xuning Hu, Yan, X., Wei, Y., Liang, H.-N., Xu, W., & Sarcar, S. "OnBodyQWERTY: An Empirical Evaluation of On-Body Tap Typing for AR HMDs." ACM Symposium on Spatial User Interaction. DOI: https://dl.acm.org/ doi/10.1145/3677386.3682084 [10.1145/3677386.3682084] Accepted [SI3D' 24] Chen, B., Yan, X., Xuning Hu, Kao, D., & Liang, H.-N. "Impact of Tutorial Modes with Different Time Flow Rates in Virtual Reality Games." ACM Symposium on Interactive 3D Graphics. DOI: 10.1145/3651296 Accepted [PACMHCI' 24] Shi, R., Wei, Y., Xuning Hu, Liu, Y., Yue, Y., Yu, L., & Liang, H.-N. "Experimental Analysis of Freehand Multi-Object Selection Techniques in Virtual Reality Head-Mounted Displays." ACM Interactive Surfaces and Spaces. DOI: 10.1145/3698129 Accepted PATENTS

Interactive control methods, devices, equipment, and storage media for VR game tutorials. CN118416465A (Published)

Research Experience

The Hong Kong University of Science and Technology Computational Media Lab	2024/02 – present
Advisor: <u>Prof. Hai-Ning Liang</u>	
Remote Research Assistant	
Chinese Academy of Sciences The Institute of Software	2024/06 - 2024/10
Advisor: <u>Prof. Jin Huang</u>	
Research Assistant	
Xi'an Jiaotong-Liverpool University X-CHI Lab	2023/05 - 2024/02
Advisor: <u>Prof. Hai-Ning Liang</u>	
Research Assistant	

Projects

Modeling User Behaviors For Steering Law in Virtual Reality

2024/01 - 2024/04

Advisor: Prof. Hai-Ning Liang

- Developed a **virtual drone control system** in Unity using Oculus and XBOX controllers. The system employed **Mesh computation** to create paths, incorporating specific constraints on width, height, and curvature.
- Inspired by the paper <u>Modeling steering within above-the-surface interaction layers (CHI'07</u>), we tested the adaptability of both the **original Steering Law and the weighted Euclidean version under dual-axis width constraints in a 3D environment (Steering Law:** R² = 0.923; weighted Euclidean version: R² = 0.968).
- To investigate the effect of the weight coefficient η in the weighted Euclidean model under complex scenarios, we introduced seven curvature-constrained paths. Our findings indicated that the change in the weight coefficient followed a normal distribution curve relative to the curvature radius (η : $\mathbf{R}^2 = 0.84$). By combining the weighted Euclidean model

2022/09 – 2026/06 (Expected) Suzhou, China with the curvature model and replacing the constant term with a normal distribution function influenced by curvature, our new model demonstrated a 52.6% improvement in AIC and a 60.6% improvement in R² compared to the baseline Euclidean model.

Exploring Keyboard Input at Different Body Positions During Passthrough 2023/10 - 2024/01

Advisor: Prof. Sayan Sarcar

- Utilized a high-precision **VICON** motion capture camera and reflective markers to accurately capture hand arm movements (**3D coordinates and rotation**) with real-time communication to the Oculus headset.
- Developed a 3D keyboard in Unity to enable **precise prediction**, **error correction**, **and swipe** functionality to improve users' Words Per Minute (WPM) typing speed.
- Compared the performance of keyboards located on the Palm, Back of the hand, Forearm (anterior), Forearm (posterior), and Mid-Air based on three metrics: Text Entry Speed, Word Suggestion Usage, and Error Rates (UER, CER). Using RM-ANOVA for statistical analysis, we found that the Palm keyboard performed the best with a Words Per Minute (WPM) rate of 20.18.

Explored the effectiveness of different types of game tutorials in Virtual Reality2023/08 - 2024/10Advisor: Prof. Domic Kao and Prof. Hai-Ning Liang2023/08 - 2024/10

- Developed two types of games in Unity using C# (a rhythm game and a parkour game). Four distinct tutorial modes —bullet time, scene pause, filter application, and UI enhancements—were implemented to explore the effectiveness of various teaching methods in helping users master unfamiliar techniques.
- A between-subjects experiment was conducted with 59 participants, using learnability, player performance, experience, cognitive Load, and player feedback as evaluation metrics. Analysis using one-way ANOVA revealed that bullet time significantly enhanced control learnability and reduced cognitive load.

Investigated techniques for multi-object selection in mid-air using hand gestures2023/05 - 2024/08Advisor: Prof. Hai-Ning Liang2023/05 - 2024/08

- Based on VR **hand gesture tracking**, we treated pinching motions of different fingers as independent events. These independent events were used to control various techniques, allowing us to explore the effectiveness of gesture-based switching between techniques.
- Inspired by the paper <u>Fully-Occluded Target Selection in Virtual Reality (TVCG'20</u>), we designed **cone-casting and cross-selection techniques**. We conducted experiments in environments with varying complexity **(target density and number of distractor objects)**, using selection time and error rate as evaluation metrics.

Technical Skills

Programming Languages: C#, C, , C++, Java, SQL, Python **Tools and Frameworks:** Unity, Motion Capture, OpenGL, MySQL, Oculus SDK, Hololens, Git, SPSS, Eye-Tracking

Extra-Curriculum Experience

Oral Presentation 24nd IEEE International Symposium on Mixed and Augmented Reality (ISMAR)	2024/10
Student Volunteer 23nd IEEE International Symposium on Mixed and Augmented Reality (ISMAR)	2023/10
China Undergraduate Mathematical Contest in Modelling	2023/09
RoboMaster Robotics Competition : National Second prize in RoboMaster 2023	2023/03